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When searching for an object in the real world, observers 
must select and prioritise information that is relevant for 
the current task at the expense of irrelevant information. 
However, the process by which this occurs is unclear. 
Previous work testing the influence of scene information 
on attentional prioritisation during visual search has found 
influences of target features (Malcolm & Henderson, 
2009; Navalpakkam & Itti, 2005; Vickery et al., 2005; 
Wolfe & Horowitz, 2017; Zelinsky, 2008), scene context 
(Castelhano & Witherspoon, 2016; Neider & Zelinsky, 
2006; Pereira & Castelhano, 2014, 2019), image salience 
(Anderson et al., 2015), and various combinations thereof 
(Castelhano & Heaven, 2010; Ehinger et al., 2009; 
Malcolm & Henderson, 2010; Torralba et al., 2006; Wolfe 
& Horowitz, 2017; Zelinsky et al., 2006, 2020) on eye 
fixations. Although image salience predicts various behav-
iours during object search, such as fixation allocation 
(Henderson et al., 2007) and fast first saccades (Anderson 
et al., 2015), scene semantics influence search behaviours 
as well (Cornelissen & Võ, 2017; Hayes & Henderson, 
2019; Henderson et al., 2007). Furthermore, because scene 
semantics and image salience are correlated (Elazary & 

Itti, 2008; Henderson, 2003; Henderson et al., 2007; 
Henderson & Hayes, 2017, 2018; Rehrig, Peacock, et al., 
2020; Tatler et al., 2011) and effects that appear to be due 
to image salience often are found to be due to semantics in 
a variety of tasks (Henderson & Hayes, 2017, 2018; 
Henderson et al., 2018; 2019a, 2019b, 2020; Rehrig, 
Hayes, et al., 2020; Rehrig, Peacock, et al., 2020) salience 
effects in search might also be semantic effects instead.
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Abstract
Models of visual search in scenes include image salience as a source of attentional guidance. However, because scene 
meaning is correlated with image salience, it could be that the salience predictor in these models is driven by meaning. 
To test this proposal, we generated meaning maps that represented the spatial distribution of semantic informativeness 
in scenes, and salience maps which represented the spatial distribution of conspicuous image features and tested their 
influence on fixation densities from two object search tasks in real-world scenes. The results showed that meaning 
accounted for significantly greater variance in fixation densities than image salience, both overall and in early attention 
across both studies. Here, meaning explained 58% and 63% of the theoretical ceiling of variance in attention across 
both studies, respectively. Furthermore, both studies demonstrated that fast initial saccades were not more likely to 
be directed to higher salience regions than slower initial saccades, and initial saccades of all latencies were directed to 
regions containing higher meaning than salience. Together, these results demonstrated that even though meaning was 
task-neutral, the visual system still selected meaningful over salient scene regions for attention during search.
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Image salience and visual search

Image salience, which is defined as the local conspicuity 
of low-level image features (colours, intensities, and ori-
entations) in a scene, has been implicated as a guidance 
factor during visual search. Here, image salience has been 
found to interact with (1) search efficiency, (2) other search 
guidance factors (e.g., scene context, target features), and 
(3) the allocation of attention during search. With regard to 
search efficiency, it has been demonstrated that the sali-
ence of targets influences search performance (Biggs et al., 
2014; Nothdurft, 2006; Nuthmann et al., 2021; Treisman 
& Gelade, 1980) such that search is more efficient when 
targets are more salient in both scenes (Nuthmann et al., 
2021) and in target arrays (Biggs et al., 2014; Nothdurft, 
2006; Treisman & Gelade, 1980). This work collectively 
demonstrates that the salience of target objects influences 
search efficiency.

Image salience has also been found to interact with 
other sources of guidance in scenes, such as target features 
and scene context (Ehinger et al., 2009; Torralba et al., 
2006). This work demonstrates that target features, scene 
context, and image salience interact to facilitate visual 
search. For example, Torralba et al. (2006) found that peo-
ple tended to look in locally salient regions that were rel-
evant to finding a target object, and a combined scene 
context and image salience model predicted fixation loca-
tions better than image salience alone. However, for scenes 
in which the target object could be placed anywhere (i.e., 
coffee mugs), salience better predicted eye movements 
than the combined model. This suggests that whereas 
image salience interacts with other guidance factors, it can 
independently predict search fixations as well, depending 
on the demands of the task (but see Zelinsky et al., 2006 
who combined Gaussian mixtures of computationally-
derived target guidance and salience guidance signals, and 
found the mixture that best predicted fixation behaviour in 
a search task had a zero salience component).

Prior work has also demonstrated that search fixations 
are associated with image salience. Indeed, one study dem-
onstrated that short latency, first saccades were more likely 
to land on a region of the image with high salience than 
long latency, first (and subsequent) saccades during visual 
search (Anderson et al., 2015). Another study demon-
strated that during visual search in scenes, intensity, con-
trast, and edge density differed at fixated versus non-fixated 
scene regions, implicating a role of image salience in fixa-
tion allocation during search (Henderson et al., 2007). 
However, the same regions that differed in image features 
also differed in ratings of semantic informativeness, sug-
gesting that it might not be the image features, themselves, 
that predict fixated locations. However, image salience 
and scene semantics were not directly pitted against one 
another, so it was unclear whether image salience or 
semantics were more related to fixation allocation. 
Although it has been suggested that a semantic analog of 

salience would likely predict attention better in models of 
visual search (Ehinger et al., 2009; Henderson et al., 2007), 
to our knowledge, no studies to date have explicitly tested 
whether semantics uniquely predict eye movements better 
than image salience when searching for objects in natural 
scenes. Given that the semantic informativeness of scene 
regions may better predict search fixations than image sali-
ence, the goal of the present study was to explicitly test 
whether high-level scene meaning outperforms image sali-
ence in predicting fixation allocation during visual search.

Meaning and visual search

The hypothesis that scene meaning would outperform 
image salience in predicting fixation allocation during 
search would be consistent with cognitive guidance theory, 
which proposes that attention is generally guided by cogni-
tive factors, such as semantic knowledge gained from 
experience, including information about a scene’s likely 
semantic content and the spatial distribution of that content 
(Henderson, 2007). Cognitive guidance theory proposes 
that because scene regions are selected based upon seman-
tic informativeness, attentional priority will be based on 
the predicted informativeness (meaning) of scene regions, 
whereas image salience will produce an unranked land-
scape of targets. Indeed, studies using object-scene con-
sistency manipulations have found that the meaning of 
objects, rather than the physical salience of image features, 
guides attention during visual search (Biederman et al., 
1982; Henderson et al., 1999, 2007, 2009). The issues with 
these studies, however, is that they typically modify a sin-
gle object within a scene, resulting in only a small portion 
of the scene being useful for analysis.

Meaning maps (Henderson & Hayes, 2017) represent 
the spatial distribution of local semantic density across a 
scene, allowing us to study how semantics influence atten-
tion during visual search across natural scenes as opposed 
to a single region. Furthermore, because meaning maps are 
represented in the same format as image salience (in terms 
of the local landscape of priority), they allow researchers 
to directly compare the unique influences of high-level 
meaning and low-level image salience on attention. Since 
the introduction of meaning maps, many studies have 
shown that meaning accounts for significantly more unique 
variance in attention (operationalised as fixation density) 
than image salience (Henderson & Hayes, 2017, 2018; 
Henderson et al., 2018; Peacock et al., 2019a, 2019b, 
2020; Rehrig, Hayes, et al., 2020; Rehrig, Peacock, et al., 
2020). This work has been extended to visual search: even 
when meaning is task-neutral, it continues to guide atten-
tion during visual search for embedded letters beyond the 
role of image salience (Hayes & Henderson, 2019). In 
total, these studies suggest an obligatory role of task-neu-
tral meaning on attentional selection. However, it is 
unknown whether task-neutral meaning continues to guide 
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attention during object search in scenes. If this were the 
case, then this would suggest a mechanism whereby the 
visual system selects scene regions based upon semantic 
informativeness and would open the door to study how 
meaning interacts with other known guidance factors (e.g., 
scene context, target features) during search.

Present study

In total, the present work tested whether meaning predicts 
search fixations better than image salience during two 
object search tasks in which target objects were either pre-
sent (Experiment 1) or absent (Experiment 2). If attention 
is more related to task-neutral meaning than to task-neutral 
image salience during object search, this would provide 
evidence for a hypothesis that scene regions are, in part, 
selected based on semantic informativeness during search.

Experiment 1

Method

Participants. The sample size was set with an a priori stop-
ping rule of 30 acceptable participants based on prior 
experiments using these methods (Peacock et al., 2019a, 
2019b, 2020). To reach 30 acceptable participants, 35 Uni-
versity of California, Davis, undergraduate students with 
normal to corrected-to-normal vision initially participated 
in the experiment (26 females, average age = 21.06). All 
participants were naïve to the purpose of the study and 
provided verbal consent. Eye movement data from each 
participant were inspected for excessive artefacts due to 
blinks or loss of calibration. We then computed the signal 
percentage ([number of good samples/total number of 
samples] × 100) for each trial using custom MATLAB 
code. The signal percentage across trials was averaged for 
each participant and compared with an a priori 75% crite-
rion for signal. Overall, one participant was excluded 
based on this criterion due to poor eyetracking quality. 
Individual trials that had less than 75% signal were also 
excluded. Overall, only two total trials (0.17% of the total 
data) were excluded based upon this criterion.

Participants were also excluded if they did not correctly 
do the task. Here, the percentage of trials in which each 
participant indicated they had found the target, but the data 
showed they had not fixated the target, was calculated. If 
this occurred on over 25% of trials, that entire participant 
was excluded, resulting in removal of five participants 
(one of these participants also had poor eyetracking quality 
as defined above). These criteria resulted in analyses based 
on a total of 30 acceptable participants as per the stopping 
rule.

Apparatus. Eye movements were recorded using an Eye-
Link 1000+ tower mount eyetracker (spatial resolution at 

0.01°rms) sampling at 1,000 Hz (SR Research, 2010b). 
Participants sat 85 cm away from a 21 in. monitor, so that 
the scenes subtended approximately 26.5° × 20° of visual 
angle at 1,024 × 768 pixels. Head movements were mini-
mised using a chin and forehead rest. Viewing of the 
scenes was binocular, but eye movements were recorded 
from the right eye. The experiment was controlled using 
the SR Research Experiment Builder software (SR 
Research, 2010a). Fixations and saccades were segmented 
with EyeLink’s standard algorithm using velocity and 
acceleration thresholds (30°/s and 9,500°/s2; SR Research, 
2010b). Eye movement data were imported offline into 
MATLAB 2018a (Mathworks, Inc., Natick, MA) using the 
EDFConverter tool. The first fixation, always located at 
the centre of the display as a result of the pretrial fixation 
marker, was eliminated from analysis.

Because we were interested in search eye movements 
leading up to target decisions, and not target decision pro-
cesses themselves, and given that the meaning and sali-
ence of the targets was not explicitly controlled, only eye 
movements leading up to the first fixation on the target 
were included in the analyses. Furthermore, the target 
region was also excluded/masked in the fixation density 
maps, meaning maps, and salience maps. As a result, the 
correlation analyses did not include the meaning and 
image salience of the regions containing target objects.

Fixations that landed off the screen and any fixations 
that were less than 50 ms or greater than 1,500 ms in dura-
tion were eliminated as outliers. Saccade amplitudes that 
landed off the screen (>25°) were also excluded. Fixations 
corresponding to these saccades were included if they met 
the other exclusion criteria. This outlier removal process 
resulted in loss of 0.009% of the data across all subjects. 
Summary statistics for the eye movement measures can be 
found in Table S1 in the online Supplementary Material.

Stimuli. Forty digitised photographs (1,024 × 768 pixels) 
of indoor and outdoor real-world scenes were selected for 
this study. Scenes were luminance matched across the set 
by converting the RGB image of each scene to LAB space 
(i.e., 0 = darkest, 100 = brightest), scaling the luminance 
channel of all scenes from 0 to 1, and then adjusting them 
to the average luminance of the set. Luminance matching 
took place prior to meaning and salience map generation. 
All instruction, calibration, and response screens were also 
luminance matched to the average luminance (M = 0.43 L) 
of the scenes.

Procedure. Each experimental session consisted of two 
practice trials and 40 experimental trials in which the tar-
get was present. Participants were instructed to search 
each scene for a different target object located within that 
scene. First, a central fixation was shown on the screen for 
400 ms to orient participants to the centre of the screen 
where a word cue would appear (Figure 1). Then, a word 
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cue was presented to them for 800 ms, informing them 
what the search target would be for that scene (Choe et al., 
2017; Rayner et al., 2009). We used a word cue as opposed 
to a visual cue to encourage observers to use scene-related 
information rather than target-specific features to find the 
target (Castelhano & Heaven, 2010; Malcolm & Hender-
son, 2009; Vickery et al., 2005). Following the word cue, 
the central fixation cross reappeared for 400 ms prior to the 
search phase of the experiment (Malcolm & Henderson, 
2009; Rayner et al., 2009). The search scene was then pre-
sented and participants were given 10,000 ms to locate the 
target (Figure 1). Participants were instructed to maintain 
fixation on the target once they found it and to press 
“Enter” on a keyboard. If the target was not found, the 
scene automatically timed out after 10,000 ms and the next 
trial began. Two practice trials were administered before 
the experiment, providing participants an opportunity to 
ask any questions they had before beginning the experi-
mental trials.

After the practice trials, a 9-point calibration procedure 
was performed to map the participants’ eye positions to 
screen locations. Successful calibration required an aver-
age error of less than 0.49° and a maximum error of 0.99°. 
To maintain calibration throughout the experiment, a cali-
bration check screen preceded each trial. If the calibration 
error exceeded 1.00°, the eye tracker was recalibrated.

Map creation

Meaning maps. For this study, we used the same meaning 
map technique developed by Henderson and Hayes (2017) 
(see https://osf.io/654uh/ for code and instructions). To 
create meaning maps, scene-patch ratings were performed 
by 165 participants on Amazon Mechanical Turk. Partici-
pants were recruited from the United States, had a hit 
approval rate of 99% and 500 hits approved, and were 
allowed to participate in the study only once. Participants 
were paid US$0.50 per assignment, and all participants 
provided informed consent. Rating stimuli were the same 
40 digitised (1,024 × 768 pixels) photographs of real-
world scenes used for the visual search task. Each scene 

was decomposed into a series of partially overlapping 
(tiled) circular patches at two spatial scales. The full patch 
stimulus set consisted of 12,000 unique fine patches (87-
pixel diameter) and 4,320 unique coarse patches (205-
pixel diameter), for a total of 16,320 scene patches. We 
previously estimated the optimal meaning-map grid den-
sity for each patch size by simulating the recovery of 
known image properties (i.e., luminance, edge density, and 
entropy) as reported in Henderson and Hayes (2018).

Each participant rated 300 random patches extracted 
from 40 scenes. Participants were instructed to assess the 
meaningfulness of each patch based on how informative or 
recognisable it was. They were first given examples of two 
low-meaning and two high-meaning scene patches, to 
make sure they understood the rating task, and then they 
rated the meaningfulness of scene patches on a 6-point 
Likert-type scale (very low, low, somewhat low, somewhat 
high, high, very high). Patches were presented in random 
order and without scene context, so ratings were based on 
context-free judgements. Each unique patch was rated 
three times by three independent raters for a total of 48,960 
ratings. However, due to the large degree of overlap across 
patches, each patch contained rating information from 27 
independent raters for each fine patch and 63 independent 
raters for each coarse patch. The ratings for each pixel at 
each scale in each scene were averaged, producing an 
average fine and coarse rating map for each scene. The 
average fine and course rating maps were then combined 
into a single map using the simple average and a light 
Gaussian filter was applied using the MATLAB function 
“imgaussfilt.m” set at 10. Because the location of the 
search targets was not explicitly controlled for in the cur-
rent study, no centre bias was added to the meaning maps 
to better account for eye movements directed to targets in 
scene peripheries.

Fixation density maps. Fixation density maps were gener-
ated from the eye movement data (Figure 2; Figure S1). A 
fixation frequency matrix based on the locations (x,y coor-
dinates) of all fixations was generated across participants 
for each scene. A Gaussian low-pass filter with a circular 

Figure 1. Trial structure. This figure represents the trial structure for the visual search task. For visualisation purposes, the target 
location is enclosed in a blue box in the last panel.

https://osf.io/654uh/
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boundary and a cut-off frequency of −6 dB (a window size 
of approximately 2° of visual angle) was applied to each 
matrix to account for foveal acuity and eyetracker error. 
The Gaussian low-pass function is from the MIT Salience 
Benchmark code.1

Unbiased graph-based visual salience. Graph-based visual 
salience (GBVS) is a prominent salience model that com-
bines maps of low-level image features to create salience 
maps (Harel et al., 2006). Salience maps for each scene 
were generated using the GBVS toolbox with default set-
tings (Figure 2; Figure S1). See “makeGBVSParams.m” 
for these default parameters.

Centre bias is a natural feature of GBVS salience 
maps. However, because the location of the search tar-
gets was not explicitly controlled for in the current study, 
we opted to use meaning and salience maps that did not 
contain centre bias to account for eye movements 
directed to targets in the periphery. To generate unbiased 
GBVS maps, we used the whitening method (Rahman & 
Bruce, 2015), a two-step normalisation approach in 
which each salience map is normalised to have 0 mean 
and unit variance. After this, a second, pixel-wise nor-
malisation is performed so that each pixel location across 
all the salience maps has 0 mean and unit variance 
(Figure 2; Figure S1).

Histogram matching. To equate the power of the meaning 
and salience maps in terms of total density, image histo-
gram matching was used with the fixation density map 
for each scene serving as the reference image for the cor-
responding meaning and salience maps (Henderson & 
Hayes, 2017). Image histogram matching is desirable 
because it normalises an input image to a reference 
image, ensuring that the distribution of power in the two 
maps is similar, thus making them more equally compa-
rable. Using the ground-truth fixation density maps as the 
reference for both meaning and salience allowed us to 
directly compare the meaning and salience maps. The 
“imhistmatch” function from the MATLAB Image Pro-
cessing Toolbox was used to accomplish image histo-
gram matching.

Results

Correlation analysis. Following our past work, we used lin-
ear correlations (Pearson’s r) to test the degree to which 
meaning and image salience accounted for variance in 
fixation density maps. We chose linear correlation because 
it is easy to interpret, it operates at the map-level, it is sen-
sitive to small differences in predictors, it makes few 
assumptions, it is intuitive, it can be visualised, it generally 
balances the various positives and negatives of different 
analysis approaches, and it allows us to tease apart vari-
ance due to salience and meaning (Bylinskii et al., 2019). 
In addition, Pearson’s r is dimensionless, which makes it 
easy to compare across studies. Two-tailed, paired t-tests 
were used to statistically test the relative ability of the sali-
ence and meaning maps to linearly predict the fixation 
density maps.

Given that the meaning and salience maps were signifi-
cantly correlated to each other in the present study 
(M = 0.19, SD = 0.16) as evidenced by a one-sample t-test 
(t(39) = 7.32, p < .001, 95% CI = [0.13, 0.22]) and that our 
primary research question concerned the ability of mean-
ing and salience to independently guide visual search, we 
also used semi-partial correlations. Semi-partial correla-
tions indicate the total variance in the fixation density 
maps that can be accounted for by the meaning-independ-
ent variance in salience and the salience-independent vari-
ance in meaning. Two-tailed one-sample t-tests were used 
to compare the unique variance in attention explained by 
each map type against zero. Both t-tests are reported with 
a 95% confidence interval (CI) to indicate the range of val-
ues that are 95% certain to contain the difference between 
the groups. If the 95% CI overlaps with 0, then there is no 
statistical difference between the groups.

For the linear correlations, meaning explained signifi-
cantly more of the variance in fixation density (M = 0.15, 
SD = 0.13) than image salience (M = 0.05, SD = 0.06): 
t(39) = 5.13, p < .001, 95% CI = [0.06, 0.14], achieved 
Cohen’s d = 0.99.2 For the semi-partial correlations, mean-
ing captured 13% of the unique variance in fixation den-
sity (M = 0.13, SD = 0.11): t(39) = 7.46, p < .001, 95% 
CI = [0.10, 0.17], and salience explained 3% of the unique 
variance (M = 0.03, SD = 0.04): t(39) = 4.77, p < .001, 95% 

Figure 2. Example scenes and maps: (a) an example scene used in the study with fixations overlaid; (b) the corresponding fixation 
density map for the scene; (c) the meaning map; and (d) the salience map for the example scene.
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CI = [0.02, 0.05] (Figure 3). Although meaning and image 
salience capture significant unique variance in fixation 
density, meaning is a significantly better predictor of fixa-
tion density than image salience.3 For a visualisation of the 
scenes and maps that correspond to each scene number, 
see Figure S1.

We note that the true amount of variance in attention that 
can be accounted for is well below 100%. To demonstrate 
this, we estimated the expected maximum for meaning and 
salience to account for attention in each scene by perform-
ing a leave one out cross-validation (LOOCV) (Henderson 
& Hayes, 2018; Torralba et al., 2006). Here, we computed 
a fixation density map for each scene for 29 subjects and a 
test map for the 30th subject. The linear correlation of the 
group and test maps was computed, and this was repeated 
for all 30 subjects. Mean correlations by scene and across 
scenes were then generated. The results are shown as grey, 
dotted lines in the top panel of Figure 3, with the left panel 
showing the mean linear correlation for each scene and the 
right panel showing the grand mean across scenes. Across 
all scenes for Experiment 1, the cross-validation R2 was 
0.24 (SD = 0.08). Given these theoretical ceilings, meaning 

is explaining approximately 63% (i.e., 0.15/0.24 = 0.63) of 
the total variance and salience is explaining approximately 
21% (i.e., 0.05/0.24 = 0.21) of the total variance. We note 
that meaning is explaining a large partition (over half) of 
the variance, which is surprising considering all the other 
constraints on search. Meaning and salience performed sig-
nificantly worse than the theoretical maximum as demon-
strated by paired t-tests, meaning: t(39) = −4.54, p < .001, 
95% CI = [0.11, 0.19]; salience: t(39) = −19.62, p < .001, 
95% CI = [0.03, 0.07], but this is not surprising considering 
the other factors that are important during search, such as 
target features.

Ordinal fixation analysis. It has been hypothesised that early 
fixations may be more directly controlled by image salience 
than by meaning (Anderson et al., 2015; Borji et al., 2013). 
To test this hypothesis, we conducted an additional analysis 
focused specifically on early fixations to examine whether 
meaning still accounted for significantly more variance in 
fixation density compared with image salience. For the lin-
ear correlations, we used two-tailed paired t-tests to test 
whether meaning showed an advantage over salience for the 

Figure 3. Experiment 1: meaning versus salience. Line plots show the (a) squared linear and (b) semi-partial correlations between 
the fixation density maps, meaning (red circles), and image salience (blue squares). The grey, dashed lines in panel (a) correspond 
to the leave one out cross-validation (LOOCV) that predicted the theoretical ceiling of the variance in attention that could be 
explained. The scatter plots show the grand mean (black horizontal line), 95% confidence intervals (coloured boxes), and 1 standard 
deviation (black vertical line), for meaning and image salience across all scenes for each analysis. Each dot represents the correlation 
for a given scene.
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first three fixations on each scene. For the semi-partial cor-
relations, we used two-tailed one-sample t-tests against 0 to 
test whether meaning and salience significantly explained 
unique variance. All p-values were adjusted for multiple 
comparisons with the false discovery rate (FDR) correction. 
As shown in Figure 4, the linear correlations showed that 
meaning (Fixation 1: M = 0.07, SD = 0.11; Fixation 2: 
M = 0.09, SD = 0.12; Fixation 3: M = 0.08, SD = 0.09) signifi-
cantly explained fixation density better than salience (Fixa-
tion 1: M = 0.01, SD = 0.03; Fixation 2: M = 0.03, SD = 0.05; 
Fixation 3: M = 0.03, SD = 0.04) on the first three fixations 
(all ps < .05) (Figure 4).

The semi-partial correlation analyses showed that for 
the first (M = 0.06, SD = 0.10), second (M = 0.08, 
SD = 0.11) and third (M = 0.07, SD = 0.09) fixations, 
meaning explained significant unique variance (all FDR 
corrected ps < .001). The same was true for image sali-
ence (Fixation 1: M = 0.01, SD = 0.02; Fixation 2: 
M = 0.03, SD = 0.04; Fixation 3: M = 0.02, SD = 0.03) (all 
FDR corrected ps < .05).

These results replicate and extend previous meaning 
map results (Hayes & Henderson, 2019; Henderson & 
Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 

2019a, 2019b, 2020; Rehrig, Hayes, et al., 2020; Rehrig, 
Peacock, et al., 2020). The present findings show that 
meaning is a better predictor of the spatial distribution of 
attention than image salience during visual search for 
objects (Figures 3 and 4). This result suggests that while 
image salience has been implicated as a factor in guiding 
attention during visual search (Ehinger et al., 2009; 
Torralba et al., 2006; Treisman & Gelade, 1980; Wolfe 
et al., 1989; Wolfe & Horowitz, 2017), models of visual 
search may wish to revise their models to incorporate 
meaning.

Fast first saccades. It has been shown that fast initial sac-
cades are driven to higher salience regions than slower ini-
tial saccades during visual search (Anderson et al., 2015). 
However, given that the meaning map literature has shown 
that what at first appear to be early salience effects are due 
to meaning, we were interested to test whether the same 
might hold true for fast first saccades. To test whether fast 
first saccades were driven by meaning or image salience, 
we divided initial saccade latencies into quartile bins. 
These bins were determined by subject as fixation dura-
tions vary substantially across individuals (Castelhano & 

Figure 4. Experiment 1: correlations of meaning and salience in the first three fixations. Line plots show the (a) squared linear and 
(b) semi-partial correlations between the fixation density maps, meaning (red circles), and image salience (blue squares) for the first 
three fixations across all scenes for each analysis. (c) The average meaning (red circles) and salience (blue squares) values for each 
quartile of initial saccade latency. Error bars refer to the standard error of the mean.



8 Quarterly Journal of Experimental Psychology 00(0)

Henderson, 2008; Henderson & Luke, 2014; Luke et al., 
2018). We then generated fixation density maps for each 
scene based upon the landing location of the fixation fol-
lowing the initial saccade separated by saccade latency 
quartile. Specifically, there were four total fixation density 
maps for each scene corresponding to the landing position 
following the first, second, third, and fourth quartile of 
saccade latencies across all subjects. We then computed 
the linear and unique correlations between meaning and 
salience for each fixation density map. We then compared 
the meaning and salience correlations following the initial 
saccade latencies in the first quartile (i.e., the fastest sac-
cades) with the meaning and salience correlations in quar-
tiles 2 through 4 (i.e., the slower quartiles) via two-tailed 
paired sample t-tests.

Overall, for the linear correlations, fast first saccades 
(M = 0.03, SD = 0.10) were not directed to regions with 
higher meaning than slower first saccades (M = 0.05, 
SD = 0.08): t(39) = 1.23, p = .22, 95% CI = [−0.02, 0.06]. 
The same pattern held for image salience (fast first sac-
cades: M = 0.01, SD = 0.03; slower first saccades: M = 0.01, 
SD = 0.03): t(39) = 0.99, p = .33, 95% CI = [−0.01, 0.02], 
contrary to the predictions of the hypothesis that fast first 
saccades are more driven by image salience (Figure 4). We 
also directly compared whether first saccades at each 
latency quartile bin were significantly directed to more 
meaningful or more salient scene regions via two-tailed 
paired t-tests with p-values adjusted with the FDR correc-
tion. Saccades at the first and second saccade latency quar-
tiles were numerically (but not significantly) directed to 
meaning (quartile 1: M = 0.03, SD = 0.10; quartile 2: 
M = 0.04, SD = 0.09) over image salience (quartile 1: 
M = 0.01, SD = 0.03; quartile 2: M = 0.01, SD = 0.03); all 
ps > .05. Saccades at the third and fourth saccade latency 
quartiles were significantly more directed to meaning 
(quartile 3: M = 0.07, SD = 0.12; quartile 4: M = 0.05, 
SD = 0.08) than to salience (quartile 3: M = 0.02, SD = 0.03; 
quartile 4: M = 0.02, SD = 0.03); all ps < .05.

For the unique correlations, fast first saccades (M = 0.03, 
SD = 0.10) were not directed to regions with higher mean-
ing than slower first saccades (M = 0.05, SD = 0.08): 
t(39) = 1.16, p = .25, 95% CI = [−0.02, 0.06]. The same held 
true for image salience (fast first saccades: M = 0.01, 
SD = 0.03; slower first saccades: M = 0.01, SD = 0.02): 
t(39) = 0.72, p = .48, 95% CI = [−0.01, 0.02] (Figure 4). We 
also used two-tailed one-sample t-tests against 0 to test 
whether meaning and salience significantly explained 
unique variance for each saccade latency quartile. Overall, 
meaning explained significant unique variance for quar-
tiles 2 through 4 (quartile 2: M = 0.04, SD = 0.09; quartile 
3: M = 0.06, SD = 0.11; quartile 4: M = 0.05, SD = 0.08; all 
ps < .05) but not for quartile 1 (M = 0.03, SD = 0.10; 
p = .10). The same was true for image salience. Here, sali-
ence explained significant unique variance for quartiles 2 
through 4 (quartile 2: M = 0.01, SD = 0.02; quartile 3: 

M = 0.01, SD = 0.02; quartile 4: M = 0.01, SD = 0.02; all 
ps < .01) but not for quartile 1 (M = 0.01, SD = 0.03; 
p = .08).

Overall, the Experiment 1 results demonstrated no fast 
first effect for either meaning or salience when considering 
the linear and unique correlations. Furthermore, all sac-
cade latencies were either numerically or significantly 
more directed to meaning than to image salience.

Experiment 2

It could be that because the Experiment 1 scenes contained 
target objects, the meaning or the salience of the target 
objects themselves drove the Experiment 1 results (Biggs 
et al., 2014; Nothdurft, 2006; Nuthmann et al., 2021; 
Treisman & Gelade, 1980). To ensure that the effect of inter-
est was not driven by the target present task from Experiment 
1, we conducted a second visual search study in which tar-
gets were present or absent in scenes. Data analysis focused 
on target absent scenes so that influences of the target itself 
on eye movements would be eliminated.

Method

Participants. The sample size was set with an a priori stop-
ping rule of 30 acceptable participants based on prior 
experiments using these methods (Peacock et al., 2019a, 
2019b, 2020). To reach 30 acceptable participants, 37 Uni-
versity of California, Davis, undergraduate students with 
normal to corrected-to-normal vision initially participated 
in the experiment (28 females, average age = 20.51). All 
participants were naïve to the purpose of the study and 
provided consent. Eye movement data from each partici-
pant were inspected for excessive artefacts due to blinks or 
loss of calibration. Following Henderson and Hayes 
(2017), we averaged the percent signal ([number of good 
samples/total number of samples] × 100) for each trial 
using custom MATLAB code. The percent signal across 
trials was averaged for each participant and compared with 
an a priori 75% criterion for signal. Overall, 0 participants 
were excluded based on this criterion of poor eye tracking 
quality. Individual trials that had less than 75% eye track-
ing signal were also excluded. Only 10 total trials (0.44% 
of the total data) were excluded based upon this criterion.

Participants were also excluded if they did not correctly 
do the task. The percentage of target absent trials in which 
each participant erroneously indicated there were targets 
(even though the scene was target absent) was calculated. 
If this occurred on over 25% of trials, that participant was 
excluded, resulting in removal of seven participants. These 
criteria resulted in analyses based on a total of 30 accept-
able participants as per the stopping rule.

Apparatus. Eye movements were recorded using an Eye-
Link 1000+ tower mount eyetracker (spatial resolution 
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0.01°rms) sampling at 1,000 Hz (SR Research, 2010b). 
Participants sat 85 cm away from a 21” monitor, so that the 
scenes subtended approximately 26.5° × 20° of visual 
angle at 1,024 × 768 pixels. Head movements were mini-
mised using a chin and forehead rest. Viewing of the 
scenes was binocular, but eye movements were recorded 
from the right eye. The experiment was controlled using 
SR Research Experiment Builder software (SR Research, 
2010a). Fixations and saccades were segmented with Eye-
Link’s standard algorithm using velocity and acceleration 
thresholds (30°/s and 9,500°/s2; SR Research, 2010b). The 
resulting segmented eye movement data were imported 
offline into MATLAB using the EDFConverter tool. The 
first fixation, always located at the centre of the display as 
a result of the pretrial fixation marker, was eliminated 
from analysis. Given that we were interested in search 
activity and not target decision processes, we only ana-
lysed data from target absent trials.

Fixations that landed off the screen, and any fixations 
that were less than 50 ms or greater than 1,500 ms were 
eliminated as outliers. Occasionally, saccade amplitudes 
are not segmented correctly by EyeLink’s standard algo-
rithm, resulting in large values. Given this, saccade ampli-
tudes >25° were also excluded. Fixations corresponding 
to these saccades were included as long as they met the 
other exclusion criteria. This outlier removal process 
resulted in loss of 2.22% of the data.

Stimuli. A total of 105 digitised photographs (1,024 × 768 
pixels) of indoor and outdoor real-world scenes were selected 
for this study, with 35 scenes dedicated to each target object 
(i.e., 35 scenes for garbage bins, 35 scenes for drinking 
glasses, 35 scenes for paintings) (Figure 5). In all, 10 scenes 
from each target set were target present and 25 scenes from 
each set were target absent. Target present scenes had one or 
more target objects in the scene and served as fillers to ensure 
that participants explored each scene fully. Data analysis 
focused on target absent scenes so that influences of the tar-
get itself on eye movements would be excluded. All instruc-
tion, calibration, and response screens were luminance 
matched to the average luminance (M = 0.43 L) of the scenes.

To select suitable target absent scenes, we first identified 
scenes that did not contain the target object from a large “in-
house” database of annotated scenes. From here, only indoor 
scenes were used for paintings, as paintings typically reside 
on indoor walls. Both outdoor urban scenes and indoor 
scenes were used for garbage bins, as garbage bins typically 
appear on the floor in manmade settings. Finally, indoor 
(e.g., kitchens, offices, bars) and outdoor scenes (e.g., back 
patios) that contained manmade horizontal support surfaces 
were selected for drinking glasses. See Figure S2 to visual-
ise the scenes used in the present study.

Procedure. Each run of the experiment consisted of 6 prac-
tice trials and 105 randomised experimental trials split into 

three counterbalanced target object blocks (35 trials in 
each block). In each trial, a central fixation was shown on 
the screen for 400 ms to orient participants to the centre of 
the screen where a word cue would appear. Then, a word 
cue was presented for 800 ms indicating the search target 
for that scene. Following the word cue, the central fixation 
cross reappeared for 400 ms prior to the search phase of the 
experiment. The search scene was then presented for 10 s 
(Torralba et al., 2006). While the search scene was present 
on the screen, participants were instructed to count the 
number of target objects in the scene and to press “Enter” 
on a keyboard when all of the objects were found. Possible 
answers were either “zero targets” or “one or more tar-
gets.” Participants were instructed that there could be mul-
tiple targets present in the scene to encourage them to fully 
explore the scene. At the end of each trial, participants 
used the button box to indicate how many targets were pre-
sent in the scene. Two practice trials (one target present 
and one target absent) were administered before the exper-
iment for each target object (a total of six practice trials), 
providing participants an opportunity to ask any questions 
they had before beginning the experimental trials.

After the practice trials, a 9-point calibration procedure 
was performed to map the participants’ eye positions to 
screen locations. Successful calibration required an aver-
age error of less than 0.49° and a maximum error of 0.99°. 
To maintain calibration throughout the experiment, a cali-
bration check screen preceded each trial. If the calibration 
error exceeded 1.00°, the eye tracker was recalibrated.

Map creation

Meaning maps. Meaning maps for the 75 target absent 
scenes were generated (Figure 5) using the same method 
as described in Experiment 1.

Fixation density maps. Fixation density maps were gener-
ated using the same method as Experiment 1.

Unbiased GBVS. The unbiased GBVS maps were produced 
using the same method as described in Experiment 1.

Histogram matching. Image histogram matching was con-
ducted in the same manner as Experiment 1.

Results

Correlation analysis. As with Experiment 1, the correlation 
between meaning and salience (M = 0.20, SD = 0.15) was 
significant as evidenced by a one-sample t-test: 
t(74) = 11.35, p < .001, 95% CI = [0.17, 0.24]. Meaning 
explained significantly greater linear variance in fixation 
density (M = 0.22, SD = 0.15) relative to image salience 
(M = 0.06, SD = 0.08) as evidenced by a paired t-test: 
t(74) = 7.90, p < .001, 95% CI = [0.12, 0.19]. For the 
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semi-partial correlations, meaning explained significant 
unique variance (M = 0.19, SD = 0.14) as per a one-sample 
t-test: t(74) = 12.13, p < .001, 95% CI = [0.16, 0.22]. The 
same held true for image salience (M = 0.04, SD = 0.06): 
t(74) = 5.96, p < .001, 95% CI = [0.03, 0.05]. These analy-
ses suggest that, irrespective of whether scenes contain 
target objects (Experiment 1) or not (Experiment 2), mean-
ing still explains linear and unique variance as people 
search for objects in scenes.

As with Experiment 1, we estimated the expected maxi-
mum for meaning and salience to account for attention in 
each scene by performing an LOOCV (Henderson & 
Hayes, 2018; Torralba et al., 2006). The results are shown 
as grey, dotted lines in the top panel of Figure 6, with the 
left panel showing the mean linear correlation for each 
scene and the right panel showing the grand mean across 
scenes. Across all scenes for Experiment 2, the cross-vali-
dation R2 was 0.38 (SD = 0.10). Given this theoretical ceil-
ing, meaning is explaining approximately 58% (i.e., 
0.22/0.38 = 0.58) of the total variance and salience is 
explaining approximately 16% (i.e., 0.06/0.38 = 0.16) of 
the total variance. As with Experiment 1, meaning 
explained over half of the available variance, which is 
large considering the other factors that guide search. As 
with Experiment 1, meaning and salience performed sig-
nificantly worse than the theoretical maximum as demon-
strated by paired t-tests (meaning: t(74) = −8.86, p < .001, 

95% CI = [−0.20, −0.13]; salience: t(74) = −20.46, p < .001, 
95% CI = [0.35, 0.28]) but again this is not surprising con-
sidering the other factors that are important during search.

Ordinal fixation analysis. Our next analysis tested whether 
early fixations are more directly controlled by image sali-
ence or meaning. To test this hypothesis, we conducted an 
ordinal fixation analysis to test whether meaning still 
accounted for significantly more variance than image sali-
ence on early fixations. Here, the linear correlations 
showed that meaning (Fixation 1: M = 0.09, SD = 0.13; 
Fixation 2: M = 0.10, SD = 0.14) was significantly more 
related to fixation densities than salience (Fixation 1: 
M = 0.02, SD = 0.03; Fixation 2: M = 0.04, SD = 0.07) for 
the first two fixations as per paired t-tests corrected with 
the FDR correction (all ps < .05) (Figure 7). There was no 
significant difference between meaning (M = 0.08, 
SD = 0.10) and salience (M = 0.04, SD = 0.08) for the third 
fixation (p > .05).

The semi-partial correlation analyses showed that for 
the first (M = 0.09, SD = 0.12), second (M = 0.10, SD = 0.13), 
and third (M = 0.07, SD = 0.09) fixations, meaning 
explained significant unique variance as per one-sample 
t-tests (all FDR corrected ps < .001). The same was true 
for image salience (Fixation 1: M = 0.01, SD = 0.03; 
Fixation 2: M = 0.03, SD = 0.06; Fixation 3: M = 0.04, 
SD = 0.08; all FDR corrected ps < .05). Overall, the ordinal 

Figure 5. Example scenes and maps: (a) example target absent scenes used in the study for (a) paintings, (b) garbage bins, and  
(c), (d) drinking glasses with fixations overlaid. (e) the corresponding fixation density map for the scene. (f) the meaning map and  
(g) the salience map for the example scene.
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fixation analyses for Experiment 2 replicated Experiment 
1, suggesting that the presence of the target object in 
Experiment 1 did not influence the relationship between 
meaning and visual search behaviours.

Fast first saccades. Prior work suggests that fast initial sac-
cades are driven to higher salience regions than slower ini-
tial saccades during visual search (Anderson et al., 2015). 
In the present work, we tested whether this fast first sali-
ence effect was actually a fast first meaning effect. As per 
Experiment 1, the linear correlations in Experiment 2 dem-
onstrated that fast first saccades (M = 0.07, SD = 0.11) were 
not directed to regions with higher meaning than slower 
first saccades (M = 0.05, SD = 0.08): t(29) = −0.72, p = .22, 
95% CI = [−0.02, 0.06]. The same pattern held for image 
salience (fast first saccades: M = 0.02, SD = 0.04; slower 
first saccades: M = 0.03, SD = 0.04): t(29) = 0.54, p = .59, 
95% CI = [−0.01, 0.01], contrary to the predictions of the 
hypothesis that fast first saccades are more driven by image 
salience (Figure 4). We also directly compared whether 
first saccades at each latency quartile bin were significantly 
directed to more meaningful or more salient scene regions 

via two-tailed paired t-tests with p-values adjusted with the 
FDR correction. Saccades at all saccade latency quartiles 
were significantly directed more to meaning (quartile 1: 
M = 0.07, SD = 0.11; quartile 2: M = 0.08, SD = 0.13; quartile 
3: M = 0.05, SD = 0.10; quartile 4: M = 0.05, SD = 0.08) than 
to salience (quartile 1: M = 0.02, SD = 0.04; quartile 2: 
M = 0.03, SD = 0.06; quartile 3: M = 0.02, SD = 0.06; quartile 
4: M = 0.03, SD = 0.05); all ps < .05.

When considering the unique correlations, fast first sac-
cades (M = 0.06, SD = 0.11) were not directed to regions 
with higher meaning than slower first saccades (M = 0.05, 
SD = 0.07): t(29) = −0.92, p = .36, 95% CI = [–0.03, 0.01]. 
The same pattern held for image salience (fast first sac-
cades: M = 0.02, SD = 0.04; slower first saccades: M = 0.02, 
SD = 0.04): t(29) = 0.13, p = .90, 95% CI = [–0.01, 0.01]. We 
also used two-tailed one-sample t-tests against 0 to test 
whether meaning and salience significantly explained 
unique variance for each saccade latency quartile. Overall, 
meaning explained significant unique variance for all quar-
tiles (quartile 1: M = 0.06, SD = 0.11; quartile 2: M = 0.07, 
SD = 0.13; quartile 3: M = 0.05, SD = 0.10; quartile 4: 
M = 0.05, SD = 0.08); all ps < .001. The same held true for 

Figure 6. Experiment 2: meaning versus salience. Line plots show the (a) squared linear and (b) semi-partial correlations between the 
fixation density maps, meaning (red circles), and image salience (blue squares). The grey, dashed lines in panel (a) correspond to the leave 
one out cross-validation (LOOCV) that predicted the theoretical ceiling of the variance in attention that could be explained. The scatter 
plots show the grand mean (black horizontal line), 95% confidence intervals (coloured boxes), and 1 standard deviation (black vertical line), 
for meaning and image salience across all scenes for each analysis. Each dot represents the correlation for a given scene. People searched 
for paintings in scenes 1–25. People searched for garbage bins in scenes 26–50, and searched for drinking glasses in scenes 51–75.
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salience (quartile 1: M = 0.02, SD = 0.04; quartile 2: 
M = 0.02, SD = 0.06; quartile 3: M = 0.02, SD = 0.06; quartile 
4: M = 0.02, SD = 0.04); all ps < .01.

Overall, the results for Experiment 2 generally repli-
cated Experiment 1. Although there was no fast first effect 
for either meaning or salience (as per Experiment 1), ini-
tial saccades at all latencies were significantly more 
directed to higher meaning regions than higher salience 
regions.

Discussion

Prior work has tested how target features (Malcolm & 
Henderson, 2009; Navalpakkam & Itti, 2005; Vickery 
et al., 2005; Wolfe & Horowitz, 2017; Zelinsky, 2008), 
scene context (Castelhano & Witherspoon, 2016; 
Henderson et al., 1999; Neider & Zelinsky, 2006; Pereira 
& Castelhano, 2014, 2019) image salience (Anderson 
et al., 2015), and various combinations of these sources 
(Castelhano & Heaven, 2010; Ehinger et al., 2009; 
Malcolm & Henderson, 2010; Torralba et al., 2006; Wolfe 
& Horowitz, 2017; Zelinsky et al., 2006, 2020) influence 
eye movements during object search in scenes. However, 
because meaning and image salience are correlated 
(Elazary & Itti, 2008; Henderson, 2003; Henderson et al., 

2007; Henderson & Hayes, 2017, 2018; Rehrig, Peacock, 
et al., 2020; Tatler et al., 2011), and because recent work 
has shown that attention prioritises task-neutral meaning 
over image salience during visual search for embedded let-
ters in scenes (Hayes & Henderson, 2019), the current 
study tested whether this pattern of results would also hold 
during visual search for objects in scenes. If task-neutral 
meaning does indeed predict search eye movements better 
than image salience, this then provides support for cogni-
tive guidance theory that suggests that attention is guided 
by cognitive factors including semantic knowledge during 
search. To investigate this question, we used a visual 
search task in which viewers searched for objects in photo-
graphs of scenes. To compare meaning and salience, we 
generated meaning maps, which capture the spatial distri-
bution of scene semantics, and salience maps, which cap-
ture the spatial distribution of image salience, and 
compared how well each predicted attention (as operation-
alised by fixation density) during search for the target.

Present findings

The main results across two studies indicated that although 
meaning and salience explained significant unique vari-
ance in attention, meaning explained significantly more of 

Figure 7. Experiment 2 correlations of meaning and salience in the first three fixations. Line plots show the (a) squared linear and 
(b) semi-partial correlations between the fixation density maps, meaning (red circles), and image salience (blue squares) for the first 
three fixations across all scenes for each analysis, and (c) the average meaning (red circles) and salience (blue squares) values for 
each quartile of initial saccade latency. Error bars refer to the standard error of the mean.
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the variance in fixation density than image salience. This 
trend held for ordinal fixation analyses, which showed that 
attention prioritised meaning over image salience from the 
earliest points in time, both overall and when only unique 
variance was considered. The advantage of meaning over 
salience in predicting search fixations extends the findings 
of Hayes and Henderson (2019), who found the same pat-
tern of results during visual search for embedded targets, 
as well as other meaning mapping studies (Henderson & 
Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 
2019a, 2019b, 2020; Rehrig, Hayes, et al., 2020; Rehrig, 
Peacock, et al., 2020), and further suggest a role of mean-
ing in visual search. However, we note that these prior 
studies found no effect of image salience whereas the cur-
rent study did. Although the ordinal fixation analysis cor-
relations appeared to be low in the present study, this was 
driven by the use of unbiased meaning and salience maps. 
In a prior study using both centre-biased and unbiased 
maps, it was found that centre bias artifactually inflated 
the variance explained (Peacock et al., 2019a). The corre-
lations between the first, second, and third fixations in the 
present study are on par with the correlations demonstrated 
in Peacock et al. (2019a).

It has also been suggested that fixations following fast 
initial saccade latencies are driven to higher salience 
regions than slower initial saccade latencies during visual 
search (Anderson et al., 2015), presumably because image 
salience is available earlier than scene meaning (Anderson 
et al., 2015, 2016). To investigate this issue here, we 
expanded the time course analyses by testing how meaning 
and image salience influenced the first attended location as 
a function of the latency of the saccade from the initial 
experimenter-defined central start location. Contrary to the 
hypothesis that fixations following fast initial saccades are 
more driven by image salience, our results showed that 
fast first saccades are no more likely to be directed to 
regions with significantly higher salience than are slower 
first saccades. The same pattern was observed for mean-
ing: fast first saccades are no more likely to be directed to 
regions with higher meaning than are slower first saccades. 
Importantly, we also found that first saccades of all laten-
cies, including fast first saccades, were directed to regions 
with greater meaning than image salience, although these 
effects were stronger in Experiment 2. These results sug-
gest that in the context of search for objects in natural 
scenes, meaning plays an important role in guiding overt 
attention from the earliest points in time. This result is also 
consistent with recent evidence that the spatial distribution 
of meaning in scenes is available almost as quickly as the 
spatial distribution of salience, and both well within the 
latency of the first saccade (Kiat et al., 2022).

Importantly, the observed pattern of results replicated 
across two studies, in which targets were either present or 
absent. This pattern suggests that irrespective of the mean-
ing and salience of target objects or the target features 
themselves, meaning plays a role in search.

Mechanism

Cognitive guidance theory states that attention is guided 
by scene regions that are semantically informative and 
cognitively relevant (Henderson, 2007; Henderson & 
Hayes, 2017, 2018; Henderson et al., 2018). The present 
study provides evidence of cognitive guidance theory sug-
gesting that people use their stored semantic knowledge to 
guide their search processes. The present work suggests 
that even though meaning is not relevant to the search task, 
people cannot ignore (or “turn off”) the meaning of what 
they are looking at. Indeed, prior scene studies have shown 
that people cannot help but look at task-neutral scene 
meaning during search for bright patches (Peacock et al., 
2019a) or during search for letters overlaid on top of a 
scene (Cornelison & Võ, 2017; Hayes & Henderson, 
2019). Furthermore, recent physiological work shows that 
the distribution of meaning is computed rapidly (prior to 
the first fixation) and demonstrates a neural basis for 
meaning-based guidance of attention that is distinct from 
image salience (Kiat et al., 2022). Together, the findings of 
the present work and that of past work demonstrate that 
irrespective of what a viewer is doing, a scene and its 
objects carry semantic content (e.g., a kitchen is a kitchen 
irrespective of whether you’re making dinner or looking 
for a coffee cup) and viewers cannot help but use that 
semantic content to inform where they move their eyes 
next. This suggests that people use their semantic knowl-
edge gained from experience to rapidly make predictions 
about a scene’s likely semantic content and the spatial dis-
tribution of that content for attentional prioritisation 
(Henderson, 2017). Given the obligatory role of meaning 
during search, it stands to reason that models of search 
may wish to incorporate task-neutral meaning into their 
models (see the following section).

Other guidance factors

Studies have shown that target features (Malcolm & 
Henderson, 2009; Navalpakkam & Itti, 2005; Vickery 
et al., 2005; Wolfe & Horowitz, 2017; Zelinsky, 2008), 
scene context (Castelhano & Witherspoon, 2016; Neider & 
Zelinsky, 2006; Pereira & Castelhano, 2014, 2019), mem-
ory (Draschkow et al., 2014; Võ & Wolfe, 2013), and other 
guidance factors influence search fixations. Despite the 
many constraints on fixation placement during visual 
search, the present study still finds (surprisingly) that task-
neutral meaning continues to be important. In fact, the pre-
sent study extends a recent finding that the expected 
locations of target objects interact with the semantic infor-
mativeness (i.e., meaning) of scene regions to predict 
where people look during object search (Peacock et al., 
2021). Together, the present findings in the context of prior 
work suggest that even though meaning maps are gener-
ated in a task-neutral fashion, the visual system selects 
scene regions based on semantic informativeness as repre-
sented by those maps, and these scene regions interact 
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with other sources of search guidance. Given these find-
ings, models of search should consider incorporating 
meaning with other sources of guidance.

Indeed, an interesting future avenue for research will be 
to test how meaning interacts with other sources of guid-
ance, such as target object features in the search target tem-
plate. Zelinsky et al. (2006) combined Gaussian mixtures 
of computationally derived target guidance and salience 
guidance signals, and found the mixture that best predicted 
fixation behaviour in a search task had a zero salience 
component. However, it is unknown whether the same is 
true for a combination of target features and meaning, or 
whether target features and meaning would interact to 
enhance prediction of search guidance. We predict that (1) 
because our results replicated across target present and 
absent tasks in which meaning explained a nontrivial 58% 
and 63% of the theoretical ceiling of variance in attention, 
respectively, and (2) because it is unlikely that task-neutral 
meaning is perfectly correlated with target features, both 
meaning and target features would likely add unique vari-
ance to a model of search incorporating the two signals.

Object guidance during search

Prior work has demonstrated that during non-search tasks, 
objects predict fixation allocation (Castelhano et al., 2009; 
Chen & Zelinsky, 2019; Cronin et al., 2020; Einhäuser 
et al., 2008; Nuthmann & Henderson, 2010; Nuthmann 
et al., 2020; Pajak & Nuthmann, 2013; Stoll et al., 2015; ‘t 
Hart et al., 2013). Because meaning maps have an object 
bias and explain search fixations independent of image 
salience in the present study, it could be the case that 
objects, in general, are also important for fixation alloca-
tion during search. Future work could test whether objects 
indeed guide attention during search independent of mean-
ing and whether object information interacts with meaning 
and other guidance factors during search. Knowledge of 
this would provide converging evidence that general 
semantic information beyond known search guidance fac-
tors are important for search.

Limitations

It could be that the scenes used here were biased in favour 
of meaning rather than visual salience. When considering 
the whole scene analysis, meaning had an advantage over 
image salience in 75% of the scenes (30 of 40 scenes) in 
Experiment 1 and 77% of the scenes (58 out of 75 scenes) 
in Experiment 2. Although there are no apparent system-
atic differences between these scenes and the scenes in 
which image salience had the advantage in the current 
study (see Figures S1 and S2), there may be circumstances 
in which image salience is a better predictor of attention, 
such as in certain scene categories or tasks. For example, 
in Experiment 2, salience explained search fixations better 

than image salience 16% of the time for drinking glasses 
and paintings and 36% of the time during search for gar-
bage bins, which suggests that salience may have an 
advantage depending on the task or scenes used. Future 
meaning mapping studies may wish to use a larger scene 
set to address whether there are systematic differences in 
scenes in which meaning or image salience has the 
advantage.

Salience maps are valuable to computational modelling 
of search, as they can be obtained for any new image, even 
images that a model has never seen. For meaning maps to 
be as easy to apply to computational modelling of search 
behaviour as image salience, it will be necessary to gener-
ate meaning maps for a broader set of scenes than cur-
rently exists. One way to automate meaning map generation 
would involve using a deep learning model to compute 
meaning maps without depending on crowd-sourcing. It is 
important to note, however, that our purpose in the present 
study was not to generate a prediction machine for com-
puter vision, but rather to understand the factors that the 
human brain uses to guide attention. Therefore, it was not 
critical for the current question that there be an easy way to 
take an arbitrary scene and automatically generate a mean-
ing map for it. However, developing models to generate 
image-computable meaning maps is an important explora-
tion for future modelling endeavours.

Newer (deep) salience models exist (e.g., DeepGaze II: 
Kümmerer et al., 2016; ICF: Kümmerer et al., 2017). We 
elected not to use these models in the current study because 
deep salience models are trained and optimised on fixation 
data and therefore capture additional regularities in look-
ing behaviour beyond image salience (e.g., people are 
more likely to make short rather than long saccades). 
Furthermore, a recent study found that deep salience mod-
els are correlated with both meaning and image salience 
(Hayes & Henderson, 2021). Trying to pull apart, then, 
what deep salience maps are capturing is not a trivial prob-
lem given that eye movements are related to many factors. 
Conversely, image salience models simply capture con-
spicuous low-level image features. Therefore, given our 
theoretical focus specifically on image salience, it was the 
more appropriate representation to answer the question of 
whether high-level scene semantics or low-level image 
salience guides attention during visual search.

We note that whereas deep salience models are correlated 
with meaning (Henderson & Hayes, 2021), that does not nec-
essarily mean that these models extract meaning in the same 
way as human raters, or indeed at all. Hayes and Henderson 
(2022) found that people rate diffeomorphed patches (patches 
in which meaning has been removed but visual features 
retained) to have significantly less meaning than non-diffeo-
morphed patches, whereas deep net models show a moderate 
increase. This result suggests that meaning maps indeed 
reflect local semantic content in scenes, whereas deep sali-
ence models reflect something else.
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Conclusion

The current work sought to understand how meaning and 
image salience guide attention during visual search for 
objects in real-world scenes. We found that meaning 
accounted for significantly more variance in fixation den-
sity than image salience, both overall and early during 
viewing, and that fast initial saccades were not directed to 
higher salience regions than slower initial saccades. These 
findings extend the visual search literature, suggesting that 
meaning contributes to attentional selection during visual 
search in real-world scenes.
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Notes

1. ht tps: / /gi thub.com/cvzoya/sal iency/blob/master /
code_forMetrics/antonioGaussian.m

2. To determine whether we obtained adequate effect sizes for 
the primary comparison of interest, we conducted a sensitiv-
ity analysis using G*Power 3.1 (Faul et al., 2007, 2009). We 
computed the effect size index d (Cohen, 1977) and the criti-
cal t statistic for a two-tailed paired t-test with 95% power 
and a sample size of 40 scenes using the mean and SD of dif-
ferences (M = 0.10; SD = 0.12). The analysis revealed a criti-
cal t value of 2.02, a minimum d of 0.81, and 0.99 achieved 

power. Overall, the achieved Cohen’s d (0.99) was larger 
than the minimum d (0.81).

3. The graph-based visual salience (GBVS) salience map used 
was centre emergent, which means that it has implicit centre 
bias. To ensure that the advantage of meaning over salience 
was not due to the whitening process that removed the centre 
bias, we replicated the main result using the Itti et al. (1998) 
salience model that did not integrate centre bias into its com-
putation. To generate the Itti et al. salience map, we used the 
“ittikochmap” function from the GBVS toolbox with the fol-
lowing settings: channels = “CIO,” unCenterBias = 1, useIt-
tiKochInsteadOfGBVS = 1. Overall, the pattern of results 
held. When considering the linear relationship between 
meaning and fixation densities (M = 0.15, SD = 0.13) and 
image salience and fixation densities (M = 0.09, SD = 0.10), 
meaning predicted attention significantly better than image 
salience: t(39) = 2.92, p < .01, 95% CI = [0.02, 0.10]. 
Meaning (M = 0.10, SD = 0.11; t(39) = 6.15, p < .001, 95% 
CI = [0.07, 0.14]) and image salience (M = 0.04, SD = 0.05; 
t(39) = 5.20, p < .001, 95% CI = [0.03, 0.06]) both uniquely 
predicted eye movements.
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