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From the earliest recordings of eye movements during
active scene viewing to the present day, researchers
have commonly reported individual differences in eye
movement scan patterns under constant stimulus and
task demands. These findings suggest viewer individual
differences may be important for understanding gaze
control during scene viewing. However, the relationship
between scan patterns and viewer individual differences
during scene viewing remains poorly understood
because scan patterns are difficult to analyze. The
present study uses a powerful technique called
Successor Representation Scanpath Analysis (Hayes,
Petrov, & Sederberg, 2011, 2015) to quantify the
strength of the association between individual
differences in scan patterns during real-world scene
viewing and individual differences in viewer intelligence,
working memory capacity, and speed of processing. The
results of this analysis revealed individual differences in
scan patterns that explained more than 40% of the
variance in viewer intelligence and working memory
capacity measures, and more than a third of the variance
in speed of processing measures. The theoretical
implications of our findings for models of gaze control
and avenues for future individual differences research
are discussed.

When viewing a scene, we actively move our eyes
three to four times each second to sample the visual
environment (Henderson, 2003). The series of eye
movements during scene viewing can broadly be
categorized into periods where our eyes are held
relatively stable (fixations) and periods where our eyes
rapidly move between two different spatial locations
(saccades). During fixation periods, the area of the
eye’s retina with the highest acuity is directed to a
specific location within the scene and high-quality
visual information is acquired. In contrast, limited
visual information is acquired during the rapid saccadic
eye movements between fixations—a phenomena
known as saccadic suppression (Matin, 1974; Thiele,

Henning, Kubischik, & Hoffman, 2002). The result of
viewing a real-world scene is a complex, sequential
pattern of fixations and saccades called ‘‘scanpaths’’ or
‘‘scan patterns’’ (Noton & Stark, 1971a, 1971b; Stark &
Ellis, 1981; see Figure 1). Scan patterns provide a rich
description of how overt visual attention is used to
sequentially filter our visual environment in an effort to
satisfy ongoing perceptual, cognitive, and behavioral
goals (Churchland, Ramachandran, & Sejnowski, 1994;
Findlay & Gilchrist, 2003), and have the potential to
provide important insights into the underlying mech-
anisms of gaze control during scene viewing.

Pioneering work on scene viewing by Buswell (1935)
and Yarbus (1967) produced early qualitative findings
that described differences in scan patterns related to the
properties of the scene stimulus, the scene task, and the
viewer. Since this early scene work, there has been a
great deal of research investigating how image prop-
erties such as color, intensity, and orientation contrib-
ute to bottom-up scene saliency (Itti & Koch, 2000,
2001; Koch & Ullman, 1985; Torralba, 2003), and the
ways in which visual saliency influences where people
look in a given scene (Bruce & Tsotsos, 2009; Koehler,
Guo, Zhang, & Eckstein, 2014; Parkhurst, Law, &
Niebur, 2002). More recently, there has been a renewed
interest in attempting to quantify the extent to which
eye movements reflect top-down cognitive relevance as
a function of scene viewing task. For instance, it has
been shown that scene task can be predicted at above-
chance levels from fixation number, fixation duration,
and saccade amplitude distributions (Borji & Itti, 2014;
Henderson, Shinkareva, Wang, Luke, & Olejarczyk,
2013; Kardan, Berman, Yourganov, Schmidt, &
Henderson, 2015). In addition, it has been shown that
target scene objects that are in semantically appropri-
ate, low-salience locations are quickly located and
fixated, whereas visually salient, but cognitively irrel-
evant scene locations are rarely fixated (Henderson,
Malcolm, & Schandl, 2009). These findings highlight
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that gaze control is also strongly modulated by top-
down task demands during scene viewing. Together
these lines of research are both theoretically important
as they identify and quantify how bottom-up stimulus
properties and top-down cognitive relevance each
contribute to gaze control during scene viewing
(Koehler et al., 2014; Torralba, Oliva, Castelhano, &
Henderson, 2006).

One area that has received significantly less attention
is the relationship between individual differences in
scene scan patterns and viewer individual differences.
This is surprising considering the majority of studies
that have reported scan patterns during scene viewing
have noted that different viewers often produce
qualitatively different scan patterns under constant
stimulus and task demands (Buswell, 1935; DeAngelus
& Pelz, 2009; Henderson & Hollingworth, 1998, 1999;
Noton & Stark, 1971a, 1971b; Stark & Ellis, 1981;
Underwood, Foulsham, & Humphrey, 2009; Yarbus,
1967). The lack of work in this area may be due to the
computational difficulties associated with quantifying
scan patterns, which often prevents researchers from
analyzing them (Hayes et al., 2011). Nevertheless, scan
pattern differences when the scene stimulus and task
are held constant suggest the need for a better
understanding of the role of viewer individual differ-
ences. The goal of the present study was to quantify the
strength of the association between individual differ-
ences in scan patterns and viewer individual differences
during scene viewing. Specifically, we investigated three
cognitive dimensions of individual difference including

intelligence, working memory capacity, and speed of
processing.

Individual differences in scan patterns associated
with viewer cognitive capacities were extracted using a
powerful technique for scan pattern analysis called
Successor Representation Scanpath Analysis (SRSA;
Hayes et al., 2011, 2015). SRSA uses temporal
difference learning (Sutton, 1988) to capture statistical
regularities in scan patterns in a fixed-size matrix called
a ‘‘successor representation’’ (SR; Dayan, 1993) that
can be aggregated across trials and analyzed with
standard multivariate methods. SRSA was used to
quantify the strength of the association between
individual differences in scan patterns and individual
differences in viewer cognitive capacities by identifying
individual differences in scan patterns during scene
encoding that predicted viewers’ intelligence, speed of
processing, and working memory capacity scores
assessed via a separate cognitive test battery.

Our results produced clear support for a strong
association between individual differences in viewer
scan patterns and cognitive capacities. SRSA identified
individual differences in scan patterns during scene
viewing that explained more than 40% of the variance
in intelligence and working memory capacity scores,
and more than a third of the variance in speed of
processing scores across participants. Moreover, the
SRSA results were interpretable in terms of individual
differences in global information processing strategies
during scene encoding, such as how participants shifted
their overt attention from central and peripheral scene
information, and regularities in how participants
scanned the scenes horizontally and vertically. The
implications of these findings are broad as they suggest
individual differences in the cognitive capacities of the
viewer are strongly associated with how overt attention
is deployed to encode complex visual information in
scenes.

Method

Participants

Seventy-nine University of South Carolina under-
graduate students with normal or corrected-to-normal
vision participated in the experiment. All participants
were naive concerning the purposes of the experiment
and provided informed consent.

Apparatus

Eye movements were recorded with a SR Research
EyeLink 1000 plus tower mount eye tracker (spatial

Figure 1. Example viewer scan pattern during scene memori-

zation. The viewer was instructed to memorize the scene for a

later memory test. During 12 s of viewing the viewer made 42

fixations. The red circles show each fixation location and the red

lines indicate saccades between fixations. The white numbers

indicate the sequential order of Fixations 1 through 42.
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resolution 0.01) sampling at 1000 Hz (SR Research,
2010b). Participants sat 90 cm away from a 21-in.
monitor, so that scenes subtended approximately 338 3
258 of visual angle. Head movements were minimized
using a chin and forehead rest. Although viewing was
binocular, eye movements were recorded from the right
eye. The experiment was controlled with SR Research
Experiment Builder software (SR Research, 2010a).

Scene stimuli and task procedure

Stimuli consisted of 40 digitized photographs of real-
world scenes. The real-world scene stimuli included a
variety of indoor and outdoor environments. Five of
the scenes contained people. Participants were in-
structed to memorize each scene in preparation for a
later memory test that was not administered. Each trial
began with a fixation on a cross at the center of the
display for 300 ms. Following fixation, each scene was
presented for 12 s while eye movements were recorded.
Scenes were presented in the same order across all 79
participants. After completing the scene memorization
task, subgroups of between 30 and 40 participants
completed a series of individual difference measures of
intelligence, speed of processing, and/or working
memory capacity (see Appendix B for details). The
individual difference measures were administered to
subgroups of participants due to session time con-
straints. Eye movements were not recorded during the
individual difference test battery.

State space definitions

Three different state spaces were defined a priori to
capture simple scene viewing tendencies and applied to
eye movements to produce scan pattern sequences

across each scene (see Figure 2). Each state space
spanned the full display (1024 3 768 pixels) and was
used to examine different patterns in how participants
shifted their overt attention during scene viewing. The
radiating state space consisted of a series of radiating
rectangular areas of interest (AOIs) from the scene
center to the periphery, and was used to represent
observers’ tendencies to shift their overt attention
between more central and peripheral scene informa-
tion. The vertical state space consisted of four equal
rectangular horizontal AOIs, and was used to represent
observers’ tendencies to shift their overt attention
vertically across each scene. The horizontal state space
consisted of four equal rectangular vertical AOIs, and
was used to represent observers’ tendencies to shift
their overt attention horizontally across each scene.
Note each of these three state spaces contained an
outside border that reflected the central fixation bias,
the commonly observed phenomena in which partici-
pants concentrate their fixations more centrally and
rarely fixate the outside border of a scene (Tatler,
2007). A state number of five was chosen for each state
space instead of 10, as was used in previous SRSA
applications (Hayes et al., 2011, 2015), because there
were too few fixations per scene viewing trial to support
a state resolution of 10. The radiating, vertical, and
horizontal state spaces were each applied separately to
all 40 scenes to map each participant’s fixation
positions (i.e., x and y coordinates) to one of the five
distinct states within each state space.

Eye movement data

A 13-point calibration procedure was performed at
the start of each session to map eye position to screen
coordinates. Successful calibration required an average
error of less than 0.498 and a maximum error of less

Figure 2. State spaces used to define sequential scan patterns during scene viewing. Scan patterns during scene viewing were defined

by mapping fixation positions to three different state spaces. The radiating state space (a) measured viewer tendencies to shift their

overt attention between central and peripheral scene information. The vertical and horizontal state spaces (b and c) measured

observers’ tendencies to shift their overt attention vertically and horizontally. Each of the state spaces contained an outside state 5

that reflected the center bias observed in the global fixation density (d) across all scenes and participants (N¼ 65). Each state space

was applied globally across all 40 scenes.
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than 0.998. Fixations and saccades were segmented with
EyeLink’s standard algorithm using velocity and
acceleration thresholds (308/s and 95008/s; SR Re-
search, 2010b). The eye movement data was imported
into Matlab using the EDFConverter tool, which
converted the EyeLink data file to text that was then
imported into Matlab. In Matlab, the eye movement
data from each participant was inspected for excessive
artifacts caused by blinks or loss of calibration due to
incidental movement by examining the mean percent of
signal across all trials (Holmqvist et al., 2012;
Holmqvist et al., 2015). Fourteen participants with less
than 75% signal were removed, leaving 65 participants
that were tracked very well (mean signal ¼ 91.74%).
Traditional eye movement metrics such as fixation
duration, saccade amplitude, and fixation number were
computed for each trial. In addition, scan patterns
across the three different state spaces (Figure 2) were
computed using the x and y gaze positions of each
fixation within each scene trial. The first fixation of
each trial was discarded because it was always at the
center of the display as a result of the pretrial fixation
period, and thus uninformative.

Successor representation scanpath analysis

SRSA was used to capture statistical regularities in
scan patterns within each of the three different state
spaces and predict individual differences in the
cognitive capacities scores of the participants. SRSA
quantifies regularities in scan patterns using temporal-
difference learning (Sutton, 1988) to construct a fixed-
size matrix called an SR (Dayan, 1993). The key idea
behind SRSA is that upon observing a transition from
one state (i.e., a defined AOI within a state space) to
another, instead of simply updating the transition
probability from the first to the second state, SRSA
associates the first state with the second state and all
expected subsequent states based on prior visits to the
second state. In this way the SRSA algorithm learns to
predict future scan patterns based on past scan
patterns. After traversing a scan pattern for a given
scene, the resulting SR can be conceptualized as having
extracted the statistical regularities in temporally
extended scan patterns. Specifically, an SR matrix
contains, for each state, the temporally discounted
number of expected future fixations to all states
(Dayan, 1993). Given the uniform size of SRs and a
commonly defined set of states, the SR matrices from
different observers and/or trials can be analyzed using
standard statistical methods to identify significant
pattern regularities for various comparisons of interest.
SRSA has previously been successfully applied to study
individual differences in problem-solving strategies
during matrix reasoning (Hayes et al., 2011) and the

role of strategy refinement in pre–post designs using
matrix reasoning tests (Hayes et al., 2015). In the
present study, SRSA used individual differences in
scene viewing scan patterns to predict individual
differences in viewer intelligence, speed of processing,
and working memory capacity.

As described by Hayes et al. (2011, 2015), the first
step in SRSA is to convert the eye movements for each
trial into a trial SR. For the sake of simplicity, we will
describe the SRSA analysis in terms of a single state
space (i.e., the radiating state space), but the exact same
procedure was applied to all state spaces shown in
Figure 2. For each scene trial, each fixation was
mapped to one of the five states in the radiating state
space based on the fixation position coordinates (x and
y). This converts a series of fixation positions into a
scan pattern across the five distinct states within the
radiating state space. After mapping eye movement
positions to the radiating state space, an SR for each
trial can be computed. An SR (Dayan, 1993) was
calculated for each trial scan pattern, resulting in one 5
3 5 SR matrix M per trial for each participant. To
calculate the trial SR matrix, each trial SR matrix is
initialized with zeros and then updated for each
transition in the scan pattern. Consider a transition
from state i to state j. The ith column of the matrix—
the column corresponding to the ‘‘sender’’ state—is
updated according to:

DMi ¼ a Ij þ cMj �Mi

� �
; ð1Þ

where I is the identity matrix, each subscript picks a
column in a matrix, a is a learning-rate parameter (0 ,
a , 1), and c is a temporal discount factor (0 , c , 1).
The learning rate parameter a controls the incremental
updating and c controls the amount of temporal
discounting. The c parameter is the key to extending
the event horizon to encompass both immediate and
long-range transitions—it includes the discounted
future states in the prediction from the current state.
For example, suppose a participant scans a scene
systematically moving from the center outward twice: 1
� 2� 3� 1� 2... Then the successors of Location 1
will include both Location 2 and, weighted by c,
Location 3. Therefore, when c is set to zero the SR is
equivalent to a first-order transition matrix and as c
increases, the event horizon is extended farther and
farther into the future. After traversing the whole scan
pattern, the estimated trial SR matrix approximates the
ideal SR matrix, which contains the temporally
discounted number of expected future fixations on all
state AOIs (SR matrix rows), given the participant just
fixated on any individual state AOIs (SR matrix
columns). Note that the entries in the SR matrix are
not probabilities; they are (discounted, expected)
numbers of visits. Note also that the learning param-
eter a does not reflect a cognitive learning rate, but only
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the learning rate that optimizes the temporal-difference
learning algorithm. At this stage, the data set for the
radiating state space in our example, consisted of 40
5 3 5 trial SR matrices per participant, one for each
scene viewed.

The second step, how to aggregate SRs, is dependent
on the question of interest—in our case we wished to
quantify the strength of the association between
individual differences in scan patterns during scene
viewing and cognitive individual differences in the
viewers. Since we were interested in examining indi-
vidual differences at the participant level, we collapsed
across trials by averaging the 40 trial 53 5 SR matrices
for each participant, resulting in one mean 5 3 5 SR
matrix that summarized the scan patterns of the
corresponding participant during the scene encoding
task within a given state space. Each participant SR
matrix was reshaped to a vector of 25 features. To
reduce the dimensionality of this 25 feature space and
prevent overfitting, we performed a principal-compo-
nent analysis (PCA; Everitt & Dunn, 2001). PCA is a
technique for reducing dimensionality by finding the
most informative viewpoints (i.e., variance-maximizing
orthogonal rotations) of a high-dimensional space. The
result is a set of linear orthogonal variables called
principal components. Following standard PCA prac-
tice, we rescaled each SR feature so that it had zero
mean and unit variance across the participants.
Conceptually, these components represent dimensions
of individual differences in scan patterns. They are
expressed mathematically as orthogonal basis vectors
in the 25-dimensional SR space. Across all the
individual difference measures tested, the first 20
principal components retained over 98% of the variance
in the SR data. Given that the first 20 components
retained on average over 98% of the variance (first 10
components: 90%; first 15 components: 95%), each
participant was characterized by 20 projections onto
this rotated basis, following Hayes et al. (2011, 2015).
These 20 component projections served as potential
candidates for the five projections ultimately selected
by the hierarchical regression in the next processing
step.

The final step in SRSA is to optimize and cross-
validate the model fit between the SR projections and
the current target individual difference measure (i.e.,
the participant scores on the intelligence, processing
speed, and working memory capacity measures). The
same two-tier algorithm as Hayes et al. (2011, 2015)
was used to maximize the fit. In the inner loop, the
algorithm calculated the mean participant SRs for
given parameters a and c (Equation 1), then calculated
the first 20 principal components and the correspond-
ing projections for each participant, picked the five
projections that correlated most strongly with the

target individual difference measure, and constructed a
linear regression model with these five predictors.

In the outer loop, a Nelder-Mead optimization
routine searched for a and c that maximized the
multiple regression coefficient of the inner-loop model.
To guard against overfitting, we performed leave-one-
out cross-validation to test the generalization perfor-
mance of the two-tier fitting algorithm. That is, we
partitioned the data into a series of training and test
sets where each participant is left out in turn. We ran
the two-tier algorithm on the training set. The
parameters a and c optimized on the training set were
then used to calculate the SRs for the scan pattern
sequences of the left out participant. Finally, we
calculated the model’s prediction of the current
cognitive capacity measure score by multiplying the left
out participant’s mean SR matrix by the prediction
weight matrix (i.e., the sum of the five best principal
components scaled by their respective regression
coefficients) from the training set. We repeated this
process for each participant. This produced a predicted
individual difference score for each left out participant,
each one based on a model that had no access to the
data that was subsequently used to test it.

For all SRSA analyses a goodness-of-fit R2 across all
participants and a leave-one-out cross-validated R2

cv fit
are reported. The cross-validated fit is a much better
estimate of the generalization performance than the
goodness-of-fit R2 (Hastie, Tibshirani, & Friedman,
2009; Haykin, 2009). The goodness-of-fit R2 is inflated
because it reflects not only genuine regularities in the
population, which will generalize to new cases, but also
the idiosyncrasies of the training sample, which will
not. SRSA was systematically performed in this same
way for each state space definition (i.e., radiating,
vertical, and horizontal) to predict each cognitive
capacity measure (i.e., Raven’s score, SAT score, Trail
A score, Trail B score, operation span, reading span,
and general intelligence).

Procedure for aggregating across SRSA leave-
one-out sets

The goodness-of-fit (R2) SRSA models produced a
single set of five principal components and one
prediction weight matrix (the sum of the five principal
components scaled by their respective regression
coefficients) across all participants. However, as
discussed above, leave-one-out cross validation per-
formance is a superior measure of model generalization
performance. The leave-one-out procedure produced
five principal components and one prediction weight
matrix for each leave-one-out set, resulting in N-
participant sets of components and prediction weights.
The cross-validation prediction weight matrix is easily
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computed as the mean across the N-participant
prediction weight matrices. However, the principal
components require a more sophisticated procedure,
because while they are highly consistent across runs
their rank order can occasionally shift between
different leave-one-out sets. Therefore, components
must first be clustered into the appropriate group prior
to averaging. K-means clustering was used to group the
principal components into the appropriate five groups,
and then the average was computed resulting in five
mean principal components for each cross-validated
model.

Procedure for interpreting SRSA weights

Unlike previous successful applications of SRSA
(Hayes et al., 2011, 2015), which applied SRSA to a
well-defined problem space (i.e., a matrix reasoning
task), the real-world scene encoding task is less
constrained. As a result, it makes interpreting the
prediction weight matrices more difficult. However, one
of the major advantages of SRSA is the prediction
weight matrices and principal components are inter-
pretable. The main barrier to interpretation in this less
constrained scene viewing task is providing a way to
distill and visualize the higher order sequential patterns
that are being captured—a notoriously difficult visu-
alization task (Aigner, Miksch, Schumann, & Tomin-
ski, 2011). To assist in the interpretation of the higher
order sequential patterns captured by the SRSA
prediction weight matrices in the less constrained scene
encoding task, a general procedure was developed to
identify the most illustrative scene scan patterns for
each SRSA individual difference model (i.e., the
individual scene scan patterns that were the most
strongly positively and negatively correlated with the
SRSA prediction weights).

A simple procedure was used to search for illustra-
tive example scan patterns for each cognitive individual
difference SRSA model. For each individual difference
measure the 5 highest and 5 lowest scoring participants
were selected and the optimal SRSA parameters (a and
c) were used to convert each scene trial scan pattern
into a trial SR. The correlation between the trial SRs
from the five highest and five lowest scoring partici-
pants were then correlated with the mean cross-
validation prediction weight matrix from their respec-
tive SRSA model. These correlations represented the
association strength between the SRSA prediction
weights and the trial scan patterns, where positive
correlations were indicative of higher cognitive capacity
scores and negative correlations were indicative of
lower cognitive capacity scores. In order to identify the
most illustrative scan patterns, the 40 correlations (one
for each scene scan pattern) from each of the five lowest

scoring participants were subtracted from each of the
five highest scoring participants, resulting in 25
difference vectors of length 40. The maximum value
across all of these correlation differences was selected
as the most illustrative positive and negative scan
pattern pair for each individual difference SRSA
model, within a common scene. The most illustrative
example scan patterns are shown in Figure 5 for the
SRSA models that are highlighted with asterisks in
Table 1, including the model cross-validated prediction
weights, the most illustrative trial SRs, and the
corresponding scan patterns plotted as a function of
change in state and state transition length.

Results

The 65 participants that completed the scene
encoding task and met the eye tracking signal criterion
produced a total of 93,485 fixations with an average of
1,438 (SD ¼ 167) fixations per participant. The mean
participant fixation duration across all scene trials was
283 ms (SD¼ 43.2 ms). The mean participant saccade
amplitude was 3.58 (SD ¼ 0.448) and the mean
participant fixation number per scene trial was 35.9
(SD ¼ 6.0). Figure 3 shows the mean, standard
deviation, and the distribution of participant subgroup
scores on each of the collected cognitive individual
difference measures including Raven’s score (fluid
intelligence), SAT score (crystallized intelligence), Trail
A and B scores (speed of processing), and operation
and reading span (working memory capacity).

Scene scan patterns and cognitive capacity

Recall our goal is to quantify the strength of the
association between individual differences in scan
patterns during scene viewing and individual differ-
ences in the cognitive capacities of viewers. The
goodnesss-of-fit and cross-validated SRSA prediction
performance is shown in Table 1 for each cognitive
individual difference measure and state space. The
SRSA results showed that individual differences in scan
patterns could explain large amounts of variance in the
cognitive capacity measures. The radiating state space
produced the best overall prediction for the intelligence
measures explaining over 40% of the variance in
Raven’s score (R2

cv¼0.43) and SAT score (R2
cv¼0.45).

The radiating state space also produced the best
performance for operation span, explaining more than
40% (R2

cv¼ 0.45). The vertical state space produced the
best performance for the speed of processing measures
explaining more than a third of the variance in Trail B
score (R2

cv¼ 0.34) and more than 40% of the variance
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in Trail A score (R2
cv ¼ 0.42). The vertical state space

also explained more than 40% of the variance in
reading span scores (R2

cv ¼ 0.42) and general intelli-
gence scores (R2

cv¼ 0.41), and half the variance in SAT
score (R2

cv¼ 0.50). These results provide support for a
strong association between individual differences in
scan patterns during scene viewing and the underlying
individual differences in the cognitive capacities of the
viewers.

Looking generally at the SRSA prediction perfor-
mance in Table 1 reveals that each state space was able
to predict multiple individual differences measures well.
This suggests that these state spaces were well suited to
forming representations of temporally extended scan
patterns during scene viewing that are related to
underlying individual differences in cognitive capacity.
However, it is worth noting that the radiating state
space could not predict Trail B score well (R2

cv¼ 0.07),
the vertical state space could not predict Raven’s score
well (R2

cv ¼ 0.15), and the horizontal state space had
the weakest overall performance of the state spaces that
were tested. These weaker predictions suggest some
state spaces do not capture the scan pattern regularities
that are relevant for certain dimensions of cognitive
individual differences. This point is reinforced by the
fact that certain state space definitions seemed to be
very well suited to predicting specific cognitive capac-
ities. For instance, the radiating state space seemed
particularly well suited to capture scan patterns

associated with individual differences in intelligence,
while the vertical state space seemed best suited to
capture scan patterns related to speed of processing
measures. The working memory capacity measures
(i.e., operation span and reading span) were split
between the radiating and vertical state space.

Figure 4 shows the mean prediction weights and
mean principal components for the cross-validated
SRSA model for each individual difference measure
highlighted with an asterisk in Table 1. In the case of
the intelligence and speed of processing measures,
where there was a clear preferred common state space,
we will focus on the SRSA models from their preferred
state space. In the case of the working memory capacity
measures, where there was no clear preferred common
state space, we will highlight the most predictive (R2

cv)
SRSA model. Recall the mean cross-validated predic-
tion weights are the sum of the principal components
scaled by their respective regression coefficients and
provide a summary of the five principal components.
For sake of simplicity and brevity, we will focus our
interpretation on the SRSA model prediction weights.

Intelligence

The radiating state space seemed best suited for
capturing scan patterns associated with individual
differences in intelligence. SRSA using the radiating

Figure 3. Observed individual difference measure score scatter plots with corresponding probability density histograms.
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Figure 4. Individual difference score observations and predictions, state space, prediction weights, and principal components for each

cognitive capacity SRSA cross-validated model. The Predictions column shows the observed and SRSA predicted cognitive capacity

scores and their squared correlation, where the line represents a squared correlation of 1. The State Space column shows the state

space definition for each model. The Prediction Weights column shows the mean prediction weights across the leave-one-out fits for

each individual difference measure. Finally, the five mean principal components across the leave-one-out fits are shown for each

cross-validated SRSA model ranked according to the mean amount of variance they captured across the training sets. Positive values

associated with higher individual difference scores are shown in red and negative values associated with lower individual different

scores are shown in blue. In the prediction weights and principal components the x-axis represents the sender state and the y-axis

represents the receiver state.
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Figure 5. Illustrative positive and negative scan patterns for each individual difference SRSA model. For each individual difference

measure the mean cross-validated prediction weights for the best SRSA model are shown. Illustrative trial scan patterns that were

strongly positively/negatively correlated with the prediction weights and their corresponding trial SRs are shown to the right of each

set of prediction weights. The top scan pattern panel shows the state transitions at each scan pattern position and the bottom scan

pattern figure shows the transition length of each state transition. In the prediction weights and trial SR matrices the x-axis represents

the sender state and the y-axis represents the receiver state.
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state space explained 43% of the variance in individual
differences in Raven’s score (fluid intelligence) with a
high SRSA gamma parameter (c ¼ 0.93). Recall a
higher gamma value means the relevant scan patterns
are temporally elongated over many state time steps.
The Raven’s prediction weight matrix in Figure 4
indicated benefits to scene scan patterns that system-
atically moved between central and peripheral scene
regions, with more expected visits to central regions (1
2 3) and fewer expected visits to peripheral regions (4
5). These scan pattern regularities can also be seen in
the ideal Raven’s example scan patterns shown in
Figure 5. Previous work has shown that higher Raven’s
scores are associated with systematically processing
Raven problem information (Hayes et al., 2011, 2015).
These findings suggest that similar systematic infor-
mation processing strategies may be employed by high
fluid intelligence individuals when encoding complex
real-world scenes. The radiating state space also
explained 45% of the variance in individual differences
in SAT score (crystallized intelligence) with a moder-
ately high gamma parameter (c¼ 0.61). First, it is
worth noting that the SAT prediction weights are very
similar to the Raven’s prediction weight matrices. Like
the Raven’s prediction weights, the SAT prediction
weights show that higher SAT scoring individuals
tended to spend more time systematically moving
between central scene information, while lower scoring
individuals more frequently visited peripheral scene
information. The parity between the Raven’s and SAT
prediction weights suggests that general intelligence,
containing constituent fluid and crystallized intelli-
gences, may be associated with systematic information
processing strategies for any complex visual display.

Speed of processing

SRSA using the vertical state space explained more
than a third of the variance in both speed of processing
measures (Trail A and Trail B test scores) with similar

gamma values (Trail A, c¼ 0.49; Trail B, c¼ 0.55). As
can be seen in Figure 4 the Trail A and Trail B
prediction weight matrices resemble each other. Given
the similarity between the Trail A and Trail B
individual difference tasks and the common vertical
state space, this is not surprising. The Trail A
prediction weight matrix indicated that longer com-
pletion times were related to repeated same-state visits
between the top (State 1) and bottom half of the display
(States 3 and 4). This same pattern was present in the
Trail B prediction weight matrix, but with fewer repeat
fixations within a common vertical state, and instead
more frequent/longer length state transitions across the
full vertical extent of the scene. These pattern
differences in the degree of repeating visits and
transition length, may be related to the difference
between the demands of the Trail A and Trail B tests.
Specifically, the Trail A test only requires participants
to sequentially link a single feature dimension (i.e.,
number), whereas the Trail B task requires keeping
track and comparing two different dimensions (number
and letter) across the visual field. However, more
targeted work is needed to test this hypothesis
generated by our exploratory SRSA analysis.

Working memory capacity

There was no common state space definition that
captured both operation span and reading span well.
Individual differences in operation span were best
predicted by the radiating SRSA model (R2

cv ¼ 0.45)
and reading span was best predicted by the vertical
SRSA model (R2

cv ¼ 0.41). The SRSA operation span
model had a larger gamma parameter value (c¼ 0.50),
while the SRSA reading span model had a small
gamma (c ¼ 0.10), which approximated a first-order
transition matrix. The operation span prediction weight
matrix indicated benefits to frequent visits to the region
just outside of the display center (State 2) early in the
scan pattern, followed by visits between the early

Cognitive ID measures

Radiating state space Vertical state space Horizontal state space

R
2

R
2
cv c a R

2
R
2
cv c a R

2
R
2
cv c a

Raven’s 0.66 0.43* 0.93 0.36 0.56 0.15 0.69 0.88 0.63 0.30 0.02 1.00

SAT 0.75 0.45* 0.61 0.16 0.78 0.50 0.35 0.39 0.73 0.20 0.01 0.01

Trail A 0.64 0.37 0.03 0.92 0.65 0.42* 0.49 0.51 0.64 0.29 0.73 0.71

Trail B 0.49 0.07 0.79 0.98 0.65 0.34* 0.55 0.68 0.55 0.18 0.86 1.00

Operation span 0.66 0.45* 0.50 0.14 0.65 0.32 0.04 0.93 0.60 0.31 0.23 0.14

Reading span 0.65 0.22 0.96 0.27 0.64 0.41* 0.10 0.20 0.61 0.28 0.79 0.62

General intelligence 0.56 0.09 0.75 0.98 0.69 0.41* 0.45 0.50 0.64 0.20 0.83 0.99

Table 1. Successor Representation Scanpath Analysis (SRSA) results: Goodness-of-fit R2 and leave-one-out cross-validation (R2
cv) for

predicting individual differences (ID) in cognitive capacities from scan pattern regularities for all three state spaces (radiating, vertical,
and horizontal). Notes: An asterisk highlights the SRSA models for each cognitive individual difference measure that are discussed in
detail in the results section and shown in Figures 4 and 5.
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periphery (State 4) and the peripheral (State 5) scene
information. The reading span prediction weight
matrix with its small gamma value can effectively be
interpreted as a first-order transition matrix and
showed benefits to frequent transitions to the upper
center region (State 2) and lower interior region (State
4). It is unclear why these two working memory
capacity measures were not captured by a common
state space. However, the act of reading sentences does
involve clear attentional regularities, such as reading
left to right and top to bottom. These regularities may
be providing a boost to the vertical state space for
reading span.

General intelligence

Individual differences in general intelligence (g) were
best predicted by the vertical SRSA model (R2

cv ¼
0.41). The prediction weights are similar to the speed of
processing models where longer trail completion times
were related to greater numbers of expected visits
between the top (State 1) and bottom half of the display
(States 3 and 4). This similarity between the general
intelligence prediction weights and the speed of
processing prediction weights reflects the relatively high
loading of the speed of processing measures (Trail A
loading¼ 0.70; Trail B loading ¼ 0.92) in the factor
analysis used to estimate general intelligence (see
Appendix B).

Discussion

In this article, we used a powerful technique for scan
pattern analysis to quantify the association between
individual differences in scan patterns during scene
viewing and individual differences in viewer cognitive
capacity. Participants completed a scene encoding task
while their eye movements were recorded, and a
separate individual difference test battery that included
measures of intelligence, working memory capacity,
and speed of processing. SRSA (Hayes et al., 2011) was
used to extract individual differences in participants’
scene scan patterns that predicted individual differences
in participants’ cognitive capacities. The results re-
vealed individual differences in scan patterns during
scene encoding that explained more than 40% of the
variance in viewer intelligence and working memory
capacity measures, and more than a third of the
variance in the speed of processing measures.

Most of the scene perception studies from the last 80
years that have reported eye movement scan patterns
have noted that even when the scene stimulus and task
are held constant, different participants often produce

qualitatively different scan patterns (Buswell, 1935;
DeAngelus & Pelz, 2009; Henderson & Hollingworth,
1998; Noton & Stark, 1971a, 1971b; Underwood et al.,
2009; Yarbus, 1967). These earlier findings motivated
us to investigate the relationship between individual
differences in scan patterns and the cognitive individual
differences of viewers. While previous studies have
shown individual differences in fixation duration and
saccade amplitude distributions during scene viewing
(Andrews & Coppola, 1999; Castelhano & Henderson,
2008; Henderson & Luke, 2014), our findings are the
first to provide evidence of a strong association
between individual differences in scan patterns during
scene viewing and cognitive individual differences
among viewers.

Our results also have important theoretical implica-
tions for computational models of gaze control during
complex visual tasks like scene viewing. As was
discussed in the introduction, the majority of research
and modeling of gaze control and overt attention has
focused on how bottom-up stimulus features and top-
down task goals influence gaze control during scene
viewing, with relatively little work devoted to under-
standing the relationship between individual differences
among viewers and gaze control (Castelhano &
Henderson, 2008). Our findings arguably provide the
strongest evidence to date that the underlying cognitive
capacities of the viewer are also important for
understanding gaze control during real-world scene
viewing. Specifically, our results suggest that different
dimensions of cognitive capacity are associated with
different global information processing strategies dur-
ing the encoding of scene information. These findings
provide important new viewer-capacity constraints on
models of gaze control during scene viewing, in
addition to the image- and task-based cognitive factors
that are typically considered in modeling gaze behavior.

Our results also revealed that scan patterns may be
more informative than the location and/or duration of
eye movements for understanding the role of viewer
individual differences during scene viewing. For in-
stance, a traditional eye metric model (see Appendix C)
that ignored the sequential eye movement pattern
information and only measured the overall duration,
frequency, and distance between fixations was incapa-
ble of explaining any variance in the major cognitive
capacity measures we collected. It was only when
considering the sequential patterns between fixation
locations that we were able to extract information on
how gaze control was correlated with the underlying
individual differences in the cognitive capacities of the
viewers. Therefore, our results suggest not only that
viewer properties are an important component of gaze
control during scene encoding, they also suggest
sequential scan patterns as a critical target measure to
test future models of gaze control.
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Finally, our results suggest that scan patterns during
scene encoding could be applied to extract large
amounts of individual difference data from a single,
quick task. Our scene encoding task presented 40 scenes
for 12 s each (8 min total viewing time), and from this
limited data we were able to gain estimates of
participants’ fluid intelligence, crystallized intelligence,
speed of processing, and working memory capacities.
Specifically, SRSA was able to identify scan pattern
regularities that accounted for between one third and
one half of the variance in the cognitive capacities we
measured. It is likely that larger sample sizes would
improve the SRSA generalization performance even
more by providing more finely tuned SR model
parameter values.

While our study represents an initial step toward
understanding the relationship between individual
differences in scan patterns and individual differences
in cognitive capacity during scene perception, it is also
limited in a number of ways. First, while our data show
a strong association between individual differences in
scan patterns and cognitive individual differences, it
remains an open question what is driving this
association. One possibility is that the cognitive systems
underlying individual differences in viewer’s intelli-
gence, working memory capacity, and speed of
processing influence the functioning of the gaze control
system. The opposite possibility is that individual
differences in the gaze control system influence the
functioning of the cognitive systems underlying intel-
ligence, working memory capacity, and speed of
processing. A third possibility is that the association is
caused by an unknown third variable, such as a shared
strategy between the scene encoding task and the
cognitive tests. Of course, these possibilities are not
mutually exclusive and the association we found could
result from some mixture of these different explana-
tions. Moreover, the underlying source of the associ-
ation may be different for intelligence, working
memory capacity, and speed of processing.

A second limitation of our study is that participants
only completed a scene encoding task, so it is unclear
whether task demands modulate the relationship
between individual differences in scan patterns and the
cognitive capacities we collected. It could be that the
cognitive capacity measures we collected are specific to
scene encoding, and may not generalize to other tasks
(e.g., visual search) or to situations when there is no
explicit task (e.g., free viewing). Third, we only
examined cognitive measures of individual difference
(i.e., intelligence, speed of processing, working memory
capacity). There may be a number of other dimensions
of individual differences (e.g., clinical measures or age)
that are also relevant for scan patterns during scene
viewing. For instance, there has been some work
suggesting autism spectrum disorder and attention

deficit hyperactivity disorder can impact attentional
control characteristics (Burgess et al., 2010; Reming-
ton, Swettenham, Campbell, & Coleman, 2009).
Finally, we examined only three different potential
state spaces (i.e., Radiating, Vertical, Horizontal) that
defined and captured individual differences in broad
scanning tendencies across all scenes. There may be
more informative state space definitions.

The limitations of our current study suggest a
number of promising avenues for future research.
First, it would be informative to have participants
complete multiple scene viewing tasks (e.g., encoding,
visual search, and free viewing) to quantify how task
goals interact with individual differences in scan
patterns and viewer capacities. It may also be useful
to expand the battery of individual difference
measures to include clinical measures of individual
difference that are known to be relevant for
attentional control such as an index of attention
deficit hyperactivity disorder or autism spectrum
disorder. A study of these clinical measures could
provide interesting new insights into atypical atten-
tional control during scene viewing. Finally, in future
work it would be useful to explore other conceptu-
alizations of scanning behavior such as dynamic
scene-specific state spaces that use either bottom-up
saliency or observer-driven saliency (e.g., the five
most looked at regions in each scene) to define the
states within each scene. This could provide impor-
tant information about how bottom-up image-based
visual saliency interacts with individual differences in
scan patterns and viewer capacities.

In summary, we found that individual differences in
scan patterns during scene encoding predicted individ-
ual differences in participants’ intelligence, speed of
processing, and working memory capacity scores.
Broadly, these findings suggest an important new link
between individual differences in gaze control and
individual differences in cognitive capacity when
encoding real-world scene information. These quanti-
tative results bridge the knowledge gap between earlier
qualitative observations of individual differences in
viewer scan patterns by demonstrating a strong
association with individual differences in viewer cog-
nitive capacities. Finally, our results offer important
new viewer-capacity constraints on models of gaze
control and suggest sequential scan patterns as a
promising target measure. An important direction for
future work will be trying to determine why gaze
control and cognitive capacity are strongly associated,
and integrating how individual differences in viewer
capacities interact with bottom-up image-based prop-
erties and top-down task demands.

Keywords: scene viewing, eye movements, individual
differences, intelligence, working memory capacity, speed
of processing
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Appendix A

Determination of sample size

Target sample size was determined on the basis of
previous work using scan patterns and Successor
Representation Scanpath Analysis to predict individual
differences in cognitive capacity (Hayes et al., 2011,
2015), which indicated that a relatively small number of
participants (N¼35) can be used to train and validate a
predictive Successor Representation Scanpath Analysis
model. Therefore, we aimed to collect eye movement
data and cognitive capacity data so that each cognitive
capacity measure had approximately 35 participants.
Since all of our analyses were focused on quantifying
how well scan patterns (and other eye metrics) can
predict cognitive capacities, the main risk that must be
accounted for in the predictive models based on these
samples is overfitting. In order to control for overfitting
and provide estimates of how well each predictive
model will generalize to new data, leave-one-out cross-
validation (Haykin, 2009; Picard & Cook, 1984) was
performed and is reported for all analyses.

Appendix B

Individual difference measures

Intelligence was measured using two different tests: a
short form of the Advanced Raven’s Progressive
Matrices Test (RAPM; Raven, Raven, & Court, 1998)
and the SAT test (SAT, 2014). RAPM is a visual
geometric analogy test that measures novel problem
solving ability, known as fluid intelligence (Cattell,
1963; Jensen, 1998). A Raven problem consists of a
matrix and eight response alternatives. There are
multiple distinct relations among the entries in a given
row or column of the matrix, and the participants had
to identify the relations and select the response that
best matched the pattern. A short form of the RAPM
(Bors & Stokes, 1998; Caffarra, Vezzadini, Zonato,
Copelli, & Venneri, 2003) was administered and fluid
intelligence was measured as the total number of Raven
items answered correctly. Participants’ self-reported
SAT scores were used as an index of their knowledge

gained through experience, or crystallized intelligence
(Cattell, 1963; Jensen, 1998). Therefore, together the
intelligence battery contained individual difference
measures of both major components of general
intelligence (i.e., fluid and crystallized intelligence).

Working memory capacity was measured using two
different complex span tasks: an operation span task
and a reading span task. The complex operation span
task required participants to remember a sequence of
letters that are each followed with an arithmetic
processing task (Conway et al., 2005; Salthouse, 2011).
Capacity in the operation span task is measured as a
function of the number of letters that can be correctly
recalled. In the reading span task participants read a
series of sentences and had to recall the last word of
each sentence in order of appearance (Daneman &
Carpenter, 1980). Reading span was measured as the
number of last words correctly recalled in order. The
operation and reading complex span tasks have both
been widely used to measure individual differences in
working memory capacity (for review see Conway et
al., 2005).

Speed of processing was measured using the Trail
Making Test A and B (Manual of Directions and
Scoring, 1944; Reitan & Wolfson, 1985). The Trail
Making Test A and B involved timing how long it took
participants to draw a line between a jumbled set of
sequentially numbered dots (Trail A) and a sequence of
sequential numbers and letters (Trail B). The Trail
Making Test is thought to measure a number of factors
including speed of processing and executive control
(Salthouse, 2011). It is worth noting that the Trail A
and B measures are the only included cognitive
capacity measures where higher scores indicated lower
cognitive ability, since each task is measured as a
function of completion time, where faster times indicate
greater capacity. For the sake of consistency of
interpretation across all six cognitive capacity measures
(i.e., higher scores indicate greater capacity), the Trail
A and Trial B scores were renormalized by multiplying
the standardized data by�1 so that higher scores
indicated faster completion times.

Finally, general intelligence (g) was estimated for
each participant using factor analysis. Excluding SAT
scores, there were 51 participants that completed the
remaining five measures (Raven’s, Trail A, Trail B,
operation span, and reading span measures). A factor
analysis was performed, and the first factor from the
unrotated solution was used as an index of g. The
estimated loadings revealed the largest weighting for
speed of processing measures (Trail A¼ 0.70; Trail B¼
0.92), followed by fluid intelligence (Raven’s ¼ 0.46)
and working memory capacity (Operation span¼ 0.22;
reading span¼ 0.63).
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Appendix C

Traditional and transition probability models

SRSA performance was compared to two simpler
eye movement data models: a traditional eye metric
model and a first-order transition probability model.
The traditional eye metric model calculated the mean
fixation duration, saccade amplitude, and fixation
number for each participant across all 40 scenes. These
three eye metrics were then used as predictors in a
multiple regression model to predict each individual
difference measure. To allow a direct comparison
between the traditional eye metric model performance
and the SRSA model performance, both a goodness-of-
fit R2 and leave-one-out cross-validation (R2

cv) were
computed for each cognitive capacity measure.

The transition probability model computed first-
order transition probabilities for the same three state

spaces that were used for each SRSA model (i.e.,
radiating, vertical, and horizontal). The only difference
between the transition probability models and the
SRSA models is that a first-order transition matrix was
computed for each trial scan pattern rather than a
successor representation (SR). The same temporal
difference learning rate parameter a, dimensionality
reduction using PCA, and cross-validation procedures
were performed for the first-order transition probabil-
ity models. The comparison between the SRSA models
and the transition probability models provides a direct
estimate of the gains in prediction performance that are
due to the temporal difference learning rate and PCA
dimensionality reduction, versus the performance gains
that are due to the power of the SR to extract
temporally extended scan pattern regularities beyond
first-order transitions.

The traditional eye movement model results for
each individual difference measure are shown in Table
C1. The traditional eye metric model used mean
fixation duration, saccade amplitude, and fixation
number as predictors and was not able to account for
a significant amount of variance in any of the
cognitive individual difference measures we collected.
Table C2 shows the performance of the first-order
transition probability model that used an identical
prediction algorithm to the SRSA models. The only
difference between the SRSA model and transition
probability model was instead of using an SR for each
scan pattern, a first-order transition probability was
computed instead. While the first-order transition
probability model was able to successfully explain
some of the variance in individual difference measures,
a comparison with SRSA revealed that on average SR
increased generalization performance by 67% (median
¼ 55%). These results highlight the large benefit of
extending the temporal horizon beyond just first-order
transitions by using SR to capture temporally
extended regularities in scan patterns. Finally, it is
worth noting the importance of performing cross-
validation to test models of eye movement data that is

Cognitive ID measures R
2

R
2
cv RMSE RMSEcv

Raven’s 0.09 0.01 2.64 2.95

SAT 0.11 0.01 291.51 334.19

Trail A 0.06 0.03 5.57 6.15

Trail B 0.11 0.01 12.45 13.95

Operation span 0.09 0.01 16.58 19.06

Reading span 0.07 0.06* 0.82 0.96

General intelligence 0.14 0.01 0.87 0.99

Table C1. Goodness-of-fit and leave-one-out cross-validated
performance for predicting individual difference measures using
traditional eye metrics. Notes: The traditional eye metric model
included mean fixation duration, saccade amplitude, and
fixation number as predictors in a multiple regression model to
predict each individual difference measure. The results revealed
that traditional eye metrics are not able to predict any of the
underlying individual differences we measured. *Note this
correlation value is driven by a spurious outlier, the cross-
validated model prediction is actually worse as reflected in the
increase in the root mean squared error (RMSE).

Cognitive ID measures

Radiating state space Vertical state space Horizontal state space

R
2

R
2
cv a R

2
R
2
cv a R

2
R
2
cv a

Raven’s 0.50 0.04 0.15 0.53 0.06 0.03 0.63 0.26 1.00

SAT 0.61 0.33 0.81 0.66 0.27 0.17 0.72 0.20 0.01

Trail A 0.64 0.29 0.93 0.59 0.23 0.57 0.46 0.02 0.39

Trail B 0.46 0.03 0.28 0.63 0.27 0.07 0.55 0.07 0.99

Operation span 0.62 0.10 0.50 0.65 0.27 0.92 0.54 0.17 0.72

Reading span 0.59 0.20 0.07 0.64 0.40 0.20 0.56 0.04 0.65

General intelligence 0.49 0.04 0.24 0.69 0.38 0.09 0.65 0.15 0.99

Table C2. First order transition probability results: Goodness-of-fit R2 and leave-one-out cross-validated (R2
cv) for predicting individual

differences (ID) in cognitive capacities from scan patterns using first-order transition probability instead of successor representation.
Notes: A comparison with the SRSA performance in Table 1 shows that successor representation provides an average increase in
generalization performance (R2

cv) of 67% (median 55%) relative to first-order transition probabilities.
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evident in Tables 1, C1, and C2. Consistent with
previous modeling of eye movement data (Hayes et al.,
2011, 2015; Vigneau, Caissie, & Bors, 2006), the
SRSA, transition probability, and tradition eye metric
model results all show the goodness-of-fit R2 is

consistently inflated due to overfitting. Our results
support the general recommendation that statistical
models of eye movement data should be cross-
validated to provide more accurate estimates of their
ability to generalize to new data.
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