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Center bias outperforms image salience but not semantics
in accounting for attention during scene viewing
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Abstract
How do we determine where to focus our attention in real-world scenes? Image saliency theory proposes that our attention
is ‘pulled’ to scene regions that differ in low-level image features. However, models that formalize image saliency theory
often contain significant scene-independent spatial biases. In the present studies, three different viewing tasks were used to
evaluate whether image saliency models account for variance in scene fixation density based primarily on scene-dependent,
low-level feature contrast, or on their scene-independent spatial biases. For comparison, fixation density was also compared
to semantic feature maps (Meaning Maps; Henderson & Hayes, Nature Human Behaviour, 1, 743–747, 2017) that were
generated using human ratings of isolated scene patches. The squared correlations (R2) between scene fixation density and
each image saliency model’s center bias, each full image saliency model, and meaning maps were computed. The results
showed that in tasks that produced observer center bias, the image saliency models on average explained 23% less variance
in scene fixation density than their center biases alone. In comparison, meaning maps explained on average 10% more
variance than center bias alone. We conclude that image saliency theory generalizes poorly to real-world scenes.
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Real-world visual scenes are too complex to be taken in all
at once (Tsotsos, 1991; Henderson, 2003). To cope with this
complexity, our visual system uses a divide-and-conquer
strategy by shifting our attention to different smaller sub-
regions of the scene over time (Findlay & Gilchrist, 2003;
Henderson & Hollingworth, 1999; Hayhoe & Ballard,
2005). This solution leads to a fundamental question in
cognitive science: How do we determine where to focus our
attention in complex, real-world scenes?

One of the most influential answers to this question has
been visual salience. Image salience theory proposes that
our attention is ‘pulled’ to visually salient locations that dif-
fer from their surrounding regions in semantically uninter-
preted image features like color, orientation, and luminance
(Itti & Koch, 2001). For example, a search array that con-
tains a single red line among an array of green lines stands
out and draws our attention (Treisman & Gelade 1980;
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Wolfe, Cave, & Franzel, 1989; Wolfe 1994). The idea of
visual salience has been incorporated into many influential
theories of attention (Wolfe & Horowitz, 2017; Itti & Koch,
2001; Wolfe et al., 1989; Treisman & Gelade, 1980) and
formalized in various computational image saliency models
(Itti, Koch, & Niebur, 1998; Harel, Koch, & Perona, 2006;
Bruce & Tsotsos 2009). These prominent image saliency
models have influenced a wide range of fields including
vision science, cognitive science, visual neuroscience, and
computer vision (Henderson, 2007).

However, an often-overlooked component of image
saliency models is the role that image-independent spatial
biases play in accounting for the distribution of scene fix-
ations (Bruce, Wloka, Frosst, Rahman, & Tsotsos, 2015).
Many of the most influential image saliency models exhibit
significant image-independent spatial biases to account for
observer center bias (Rahman & Bruce, 2015; Bruce et al.,
2015). Observer center bias refers to the common empirical
finding that human observers tend to concentrate their fix-
ations more centrally when viewing scenes (Tatler, 2007).
Tatler (2007) showed observer center bias is largely indepen-
dent from scene content and viewing task, and suggested that
it may be the result of a basic orienting response, informa-
tion processing strategy, or it may facilitate gist extraction
for contextual guidance (Torralba, Oliva, Castelhano, &
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Henderson, 2006). Regardless of the source, these findings
highlight the importance of taking observer center bias into
account in evaluating models of scene attention.

This led us to ask a simple question: Are image saliency
models actually predicting where we look in scenes based
on low-level feature contrast, or are they mostly capturing
that we tend to look more at the center than the periphery
of scenes? The answer to this question is important because
when image saliency models are successful in predicting
fixation density, it is often implicitly assumed that scene-
dependent, low-level feature contrast is responsible for this
success in support of image guidance theory (Tatler, 2007;
Bruce et al., 2015).

To answer this question, we compared how well three
influential and widely cited image saliency models (Itti
& Koch saliency model with Gaussian blur, Itti et al.
(1998), Koch and Ullman (1985), and Harel et al. (2006);
graph-based visual saliency model, Harel et al. (2006);
and attention by information maximization saliency model,
Bruce and Tsotsos 2009) predicted scene fixation density
relative to their respective image-independent center biases
for three different scene viewing tasks: memorization,
aesthetic judgment, and visual search. These image saliency
models were chosen for two reasons. First, they are
bottom-up image saliency models that allow us to cleanly
dissociate low-level image features associated with image
salience theory from high-level semantic features associated
with cognitive guidance theory. Second, the chosen image
saliency models each produce different degrees and patterns
of spatial bias. The Itti and Koch and the graph-based
visual saliency models both contain substantial image-
independent spatial center biases with different profiles,
while the attention by information maximization model is
much less center-biased and served as a low-bias control.
The memorization, aesthetic judgment, and visual search
tasks were chosen because they produced varying degrees
and patterns of observer center bias that allowed us to
examine how the degree of observer center bias affects the
performance of the various image saliency models.

Finally, as an additional analysis of interest, we compared
each center bias baseline model and image saliency model to
meaning maps (Henderson & Hayes 2017, 2018). Meaning
maps draw inspiration from two classic scene-viewing
studies (Antes, 1974; Mackworth & Morandi, 1967). In
these studies, images were divided into several regions and
subjects were asked to rate each region based on how easy
it would be to recognize (Antes, 1974) or how informative
it was (Mackworth & Morandi, 1967). Critically, when a
separate group of subjects freely viewed the same images,
they mostly looked at the regions that were rated as highly
recognizable or informative. Meaning maps scale up this
general rating procedure using crowd-sourced ratings of
thousands of isolated scene patches densely sampled at

multiple spatial scales to capture the spatial distribution of
semantic features, just as image saliency maps capture the
spatial distribution of image features.

To summarize, the goal of the present article is to
test whether image salience theory, formalized as image
saliency models, offers a compelling answer to how we
determine where to look in real-world scenes. We tested
how well three different image saliency models accounted
for fixation density relative to their respective center
biases across three different tasks that produced varying
degrees of observer center bias. The results showed that
for tasks that produce observer center bias, image saliency
models actually perform worse than their center bias alone.
This finding suggests a serious disconnect between image
salience theory and human attentional guidance in real-
world scenes. In comparison, meaning maps were able to
explain additional variance above and beyond center bias in
all 3 tasks. These findings suggest image saliency models
scale poorly to real-world scenes.

Method

Participants

The present study analyzes a corpus of data from five dif-
ferent groups of participants. Three different groups of stu-
dents from the University of South Carolina (memorization,
N = 79) and the University of California, Davis (visual
search, N = 40; aesthetic judgment, N = 53) participated
in the eye tracking studies. Two different groups of Ama-
zon Mechanical Turk workers (N = 165) and University
of California, Davis students (N = 204) participated in the
meaning map studies. All five studies were approved by the
institutional review board at the university where they were
collected. All participants in the eye tracking studies had
normal or corrected to normal vision, were naı̈ve concern-
ing the purposes of each experiment, and provided written
or verbal consent.

We have previously used the memorization study corpus
to investigate individual differences in scan patterns in scene
perception (Hayes & Henderson 2017, 2018), as well as for
an initial study of meaning maps (Henderson & Hayes 2017,
2018). The observer center bias data and the comparisons
to multiple image saliency and center bias models are
presented here for the first time.

Stimuli

The study stimuli were digitized photographs of outdoor and
indoor real-world scenes (See Fig. 1a). The memorization
study contained 40 scenes, the visual search study contained
80 scenes, and the aesthetic judgment study contained 50
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Fig. 1 A typical scene and the corresponding fixation density, image
saliency, and meaning maps. The top row shows a typical scene a,
the individual fixations produced by all participants in the memoriza-
tion study b, and the resulting fixation density map c. The middle
row shows the saliency maps produced by the Itti & Koch with
blur saliency model (IKB, d), the graph-based visual saliency model

(GBVS, e), and attention by information maximization model (AIM,
f). The bottom row shows the meaning maps with each of the corre-
sponding image saliency model spatial biases applied g, h, i. All maps
were normalized using image histogram matching with the fixation
density map c as the reference image. The dotted white lines are shown
to make comparison across panels easier

scenes. In the visual search study 40 of the scenes contained
randomly placed letter L targets (excluding the area within
2◦ of the pre-trial fixation cross) and 40 scenes contained
no letter targets. Only the 40 scenes that did not contain
letter targets were included in the analysis to avoid any
contamination due to target fixations. The memorization
and visual search study contained the same 40 scenes.
The aesthetic judgment study shared 12 scenes with the
memorization and visual search scene set.

Apparatus

Eye movements were recorded with an EyeLink 1000+
tower-mount eye tracker (spatial resolution 0.01◦) sampling
at 1000 Hz (SR Research, 2010b). Participants sat 85 cm
away from a 21” monitor, so that scenes subtended approx-
imately 27◦ x 20.4◦ of visual angle. Head movements were
minimized using a chin and forehead rest. Although view-
ing was binocular, eye movements were recorded from the
right eye. The experiment was controlled with SR Research
Experiment Builder software (SR Research, 2010a).

Procedure

In the memorization study, subjects were instructed to
memorize each scene in preparation for a later memory
test, which was not administered. In the visual search study,
subjects were instructed to search each scene for between 0
and 2 small embedded letter L targets and then respond with
how many they found at the end of the trial. In the aesthetic
judgment study, subjects were instructed to indicate how
much they liked each scene on a 1–3 scale. For all three
eye tracking studies, each trial began with fixation on a
cross at the center of the display for 300 ms. Following
central fixation, each scene was presented for 12 s while eye
movements were recorded.

Eyemovement data processing

A nine-point calibration procedure was performed at the
start of each session to map eye position to screen coor-
dinates. Successful calibration required an average error of
less than 0.49◦ and a maximum error of less than 0.99◦.
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Fixations and saccades were segmented with EyeLink’s
standard algorithm using velocity and acceleration thresh-
olds (30/s and 9500◦/s2).

Eye movement data were converted to text using the
EyeLink EDF2ASC tool and then imported into MATLAB
for analysis. Custom code was used to examine subject data
for data loss from blinks or calibration loss based on mean
percent signal across trials (Holmqvist et al., 2015). In the
memorization study, 14 subjects with less than 75% signal
were removed, leaving 65 subjects for analysis that were
tracked well, with an average signal of 91.7% (SD = 5.5). In
the aesthetic judgment study, three subjects with less than
75% signal were removed, leaving 50 subjects that were
tracked well, with an average signal of 90.7% (SD = 5.8).
In the visual search study, two subjects with less than 75%
signal were removed, leaving 38 subjects for analysis that
were tracked well, with an average signal of 95.00% (SD
= 3.69). The first fixation in every trial was discarded as
uninformative because it was constrained by the pretrial
fixation cross.

Fixation density map

The distribution of scene attention was defined as the
distribution of fixations within each scene. For each task, a
fixation density map (Fig. 1c) was generated for each scene
across all subject fixations (Fig. 1b). Following our previous
work (Henderson & Hayes, 2017), the fixation frequency
matrix for each scene was smoothed using a Gaussian low-
pass filter with a circular boundary and a cutoff frequency
of −6dB to account for foveal acuity and eye-tracker error
(Judd, Durand, & Torralba, 2012).

Image saliencymaps

Saliency maps were generated for each scene using three
different image saliency models. The Itti and Koch model
with blur (IKB, Fig. 1d) and the graph-based visual saliency
model (GBVS, Fig. 1e) use local differences in image
features including color, edge orientation, and intensity to
compute a saliency map (Itti et al., 1998; Harel et al.,
2006). The saliency maps for both the IKB and GBVS
saliency models were generated using the graph-based
visual saliency toolbox with default GBVS settings and
default IKB settings (Harel et al., 2006). The attention by
information maximization saliency model (AIM, Fig. 1f)
uses a different approach and computes an image saliency
map based on each scene region’s Shannon self-information
(Bruce & Tsotsos, 2009). The AIM saliency maps were
generated using the AIM toolbox with default settings and
blur (Bruce & Tsotsos, 2009).

Meaningmaps

Meaning maps were generated as a representation of the
spatial distribution of semantic information across scenes
(Henderson & Hayes, 2017). Meaning maps were created
for each scene by decomposing the scene into a dense array
of overlapping circular patches at a fine spatial scale (300
patches with a diameter of 87 pixels) and coarse spatial scale
(108 patches with a diameter of 207 pixels). Participants
(N = 369) provided ratings of thousands (31,824) of scene
patches based on how informative or recognizable they
thought they were on a six-point Likert scale. Patches were
presented in random order and without scene context, so
ratings were based on context-independent judgments. Each
unique patch was rated by three unique raters.

A meaning map was generated for each scene by
averaging the rating data at each spatial scale separately,
then averaging the spatial scale maps together, and finally
smoothing the average rating map with a Gaussian filter
(i.e., Matlab ’imgaussfilt’ with sigma=10).

Because meaning maps are generated based on context-
independent random patch ratings, they by definition reflect
content-dependent features. For comparison with the image
saliency models, each image saliency model’s spatial center
bias was applied to the meaning maps for each scene
by applying a pixel-wise multiplication with each image
saliency model’s center bias (see Fig. 1g, h, i). This let
us examine how the same center bias from each saliency
model affected meaning map performance, allowing for a
direct comparison of low-level image features and semantic
features under the same center bias conditions.

Quantifying and visualizing center bias

Each image saliency model has a unique scene-independent
center bias. Therefore, the center bias was estimated for
each image saliency model separately (i.e., IKB, GBVS,
and AIM) using a large set of scenes from the MIT-1003
benchmark data set (Judd, Ehinger, Durand, & Torralba,
2009). Specifically, we used the scene size that was most
common in MIT-1003 data set (1024 x 768 px) and removed
the four synthetic images resulting in 459 real-world scenes.
For each image saliency model, we generated a saliency
map for each scene (459 scenes x 3 models = 1377 saliency
maps). We then placed all the saliency maps on a common
scale by normalizing each saliency map to have zero mean
and unit variance.

In order to visualize each image saliency model’s unique
center bias, we first computed the relative spatial bias
across models (Bruce et al., 2015). That is, the relative
spatial bias for each model was computed as the difference
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between the mean across all the saliency maps within each
model (Fig. 2a, b, c), minus the global mean across all
the model saliency maps (Fig. 2d). Figure 2e, f, and g
show the resulting relative spatial biases for each image
saliency model. This provides a direct visualization of how
the different image saliency model biases compare relative
to each other (Bruce et al., 2015).

We quantified the strength of the center bias in each
image saliency model using the relative bias maps and a
weight matrix that assigned weights according to center
proximity. The relative saliency maps for each model
(Fig. 2e, f, and g) were jointly rescaled from 0 to 1 to
maintain contrast changes. Next, we needed to define how
center bias was going to be weighted across image space.
We computed the Euclidean distance from the center pixel
to all other pixels, scaled it from 0 to 1, and then inverted it
(Fig. 2d). This served as a weight matrix representing center
proximity. Each saliency model’s bias was then simply the
sum of the element-wise product of its relative bias map
(Fig. 2e, f, or g) and the center weight matrix (Fig. 2h).

These same procedures were used to quantify observer
center bias and visualize relative observer center bias for
each eye-tracking study (see Fig. 3). The only difference is
that the three studies took the place of the three saliency
models, fixation density maps took the place of saliency
maps, and the scenes that were viewed in each study were
used instead of the MIT-1003 scenes. The smaller number

of scenes in the eye-tracking studies resulted in noisier
estimates of the observer center bias maps (Fig. 3) relative
to the model center bias maps (Fig. 2).

Map normalization

The saliency and meaning maps were normalized using
image-histogram matching in the same manner as Hen-
derson & Hayes (2017, 2018). Histogram matching of the
saliency and meaning maps was performed using the MAT-
LAB function ‘imhistmatch’ from the Image Processing
Toolbox. The fixation density map (Fig. 1c) for each scene
served as the reference image for the corresponding saliency
(Fig. 1d, e, f) and meaning (Fig. 1g, h, i) maps.

Results

Image saliencymodel and observer spatial biases

The image saliency models and the experimental tasks
both produced varying degrees and patterns of spatial bias
(Figs. 2 and 3). In Figs. 2 and 3, panels a, b, and c show
the average scene-independent spatial bias and panels e, f,
and g show the relative spatial bias indicating how each
model or task differed relative to all other models or tasks
respectively. We quantified the strength of the center bias in

Fig. 2 Image saliency model mean bias, global bias, relative bias, and
weight matrix. The mean spatial bias is shown for each image saliency
model, including a Itti and Koch with blur (IKB), b graph-based visual
saliency (GBVS), and c attention by information maximization (AIM)
for the MIT-1003 dataset. The relative spatial center bias for each

model e, f, and g shows how each saliency model differs relative to
the global mean across all model saliency maps d. Panel h shows
the inverted Euclidean distance from the image center that served as
the weight matrix for quantifying the degree of center bias in each
model
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Fig. 3 Eye movement mean observer bias, global bias, relative bias,
and weight matrix. The mean observer bias is shown for each eye-
tracking study, including a scene memorization, b aesthetic judgment,
and c visual search. The relative spatial center bias for each study e, f,

and g shows how each study differs relative to the global mean across
all task fixation density maps d. Panel h shows the inverted Euclidean
distance from the image center that served as the weight matrix for
quantifying the degree of observer center bias in each study

each image saliency model and experimental task using the
relative bias maps and a weight matrix (Figs. 2h and 3h) that
assigned weights according to center proximity.

A comparison of the image saliency models showed clear
differences in the degree and spatial profile of center bias in
each model (Fig. 2). GBVS displayed the strongest center
bias followed by IKB (17.3% < GBVS) and AIM (47.4%
< GBVS). The experimental tasks also produced varying
degrees and amounts of observer center bias (Fig. 3). The
memorization task produced the most observer center bias
followed by the aesthetic judgment (3% < memorization)
and the visual search tasks (18% < memorization). It will be
important to keep the relative strength of these spatial biases
in mind as we examine model performance.

Model performance

The main results are shown in Fig. 4. For each study
task (memorization, aesthetic judgment, and visual search),
we computed the mean squared correlation (R2) across
all scene fixation density maps (circles) and each image
saliency model (Fig. 1d, e, f), each saliency model’s center
bias only (Fig. 2a, b, c), and meaning maps with the same
center bias as the image saliency model (Fig. 1g, h, i). In this
framework, the center bias-only models serve as a baseline
to measure how the addition of scene-dependent image
saliency and scene-dependent semantic features affected
performance. Two-tailed, paired sample t tests were used to
determine significance relative to the respective center bias
only baseline models.

Figure 4a shows the memorization task results. We found
that the three image saliency models each performed worse
than their respective center biases alone. The full GBVS
saliency model accounted for 8.1% less variance than the
GBVS center bias model (t (39)=-3.14, p < 0.01, 95% CI
[−0.13,−0.03]). The full IKB model accounted for 25.5%
less variance than the IKB center bias model (t (39)=-9.13,
p < 0.001, 95% CI [−0.20,−0.31]). Finally, the full
AIM model accounted for 33.2% less variance than the
AIM center bias model (t (39)=-12.02, p < 0.001, 95%
CI [−0.28,−0.39]). It is worth noting that the full AIM
model performed so poorly because its center bias is weaker
than the GBVS and IKB models (recall Fig. 2g). As a
result, scene-dependent image salience played a much more
prominent role in the AIM saliency maps to its detriment.

Figure 4b shows the aesthetic judgment task results.
We found that again the three image saliency models each
performed significantly worse than their respective center
biases alone. The full GBVS saliency model accounted
for 13.3% less variance than the GBVS center bias model
(t (49)=-4.50, p < 0.001, 95% CI [−0.07,−0.19]). The
full IKB model accounted for 25.8% less variance than
the IKB center bias model (t (49)=-7.93, p < 0.001, 95%
CI [−0.19,−0.32]). Finally, the full AIM model accounted
for 32.5% less variance than the AIM center bias model
(t (49)=-11.86, p < 0.001, 95% CI [−0.27,−0.38]).

Figure 4c shows the visual search task results. Recall
that in the visual search task participants were searching for
randomly placed letters, which greatly reduced the observer
center bias (Fig. 3g). We found that the three image saliency
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Fig. 4 Squared linear correlation between fixation density and maps
across all scenes for each scene viewing task. The scatter box plots
show the squared correlation (R2) between the scene fixation density
maps and the saliency center bias maps (graph-based visual salience,
GBVS; Itti & Koch with blur, IKB; and attention by information

maximization saliency model, AIM), full saliency maps, and meaning
maps for each scene task. The scatter box plots indicate the grand cor-
relation mean (black horizontal line) across all scenes (circles), 95%
confidence intervals (colored box) and 1 standard deviation (black
vertical line).

models each performed slightly better (GBVS, 4.8%; IKB,
6.8%; AIM, 5.3%) than their respective center biases alone
in the visual search task (GBVS, t (39)=3.39, p < 0.001,
95% CI [0.02, 0.7]; IKB, t (39)=3.63, p < 0.001, 95%
CI [0.03, 0.11]; AIM,t (39)=2.57, p < 0.05, 95% CI
[0.01, 0.09]). This change is reflective of the much weaker
observer center bias in the visual search task relative to the
memorization and aesthetic judgment tasks. Together, these
factors greatly reduce the squared correlation of the center
bias only model.

In contrast, the distribution of semantic features captured
by meaning maps were always able to explain more variance
than each center bias model alone. In the memorization task,
meaning maps explained on average 9.7% more variance
than center bias alone (GBVS bias, t (39)=6.32, p < 0.001,
95% CI [0.08, 0.15]; IKB bias, t (39)=6.39, p < 0.001, 95%
CI [0.06, 0.12]; AIM bias, t (39)=6.41, p < 0.001, 95%
CI [0.06, 0.12]). In the aesthetic judgment task, meaning
maps explained on average 10.3% more variance than center
bias alone (GBVS bias, t (49)=3.60, p < 0.001, 95% CI
[0.04, 0.12]; IKB bias, t (49)=6.65, p < 0.001, 95% CI
[0.08, 0.16]; AIM bias, t (49)=5.93, p < 0.001, 95% CI
[0.07, 0.15]). Finally, in the visual search task, meaning
maps explained on average 10.0% more variance than the
center bias only models (GBVS bias, t (39)=8.99, p <

0.001, 95% CI [0.06, 0.10]; IKB bias, t (39)=10.25, p <

0.001, 95% CI [0.09, 0.14]; AIM bias, t (39)=10.27, p <

0.001, 95% CI [0.08, 0.13]).
There has been some evidence suggesting that early

attentional guidance may be more strongly driven by image
salience than later attention (O’Connel & Walther 2015;
Anderson, Donk, & Meeter, 2016). Therefore, we per-
formed a post hoc analysis to examine how the relationship
between fixation density and each model varied as a func-
tion of viewing time. Specifically, we computed the corre-
lation between the fixation density maps and each model in
the same way as before, but instead of aggregating across all
the fixations, we aggregated as a function of the fixations up
to that point. That is, for each scene, we computed the fix-
ation density map that contained only the first fixation for
each subject, then the first and second fixation for each sub-
ject, and so on to generate the fixation density map for each
scene at each time point. We then averaged the correlation
values across scenes just as before.

Figure 5 shows how the squared correlation between
fixation density and each model varied over time. The
results are consistent with the main analysis shown in Fig. 4.
Specifically, Fig. 5 shows that the respective center bias
models are more strongly correlated with the first few
fixations than the full image saliency models. Second, Fig. 5
shows that in tasks that are center biased (i.e., memorization
and aesthetic judgment), center bias performs better than the
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Fig. 5 Squared linear correlation between fixation density and maps
across all scenes for each scene viewing task over time. The line plots
show the squared correlation (R2) between the fixation density maps
and the saliency center bias maps (graph-based visual salience, GBVS;
Itti & Koch with blur, IKB; and attention by information maximization

saliency model, AIM), full saliency maps, and meaning maps for each
scene task over fixations. The lines indicate the grand mean across all
scenes for each model up to each time point. The error bars indicate
95% confidence intervals

full image saliency models regardless of the viewing time,
while in tasks that are less center biased (i.e., visual search),
the image saliency gains a small advantage over center
bias that accrues over time. Finally, Fig. 5 shows that the
meaning advantage over image salience observed in Fig. 4
holds across the entire viewing period including even the
earliest fixations. This finding is inconsistent with the idea
that early scene attention is biased toward image saliency.

Taken together, our findings suggest that in tasks that
produce observer center bias, adding low-level feature
saliency actually explains less variance in scene fixation
density than a simple center bias model, and that the
same pattern holds for the earliest fixations ruling out an
early saliency effect. This highlights that scene-independent
center bias and not image salience is explaining most of the
fixation density variance in these models. In comparison,
meaning maps were consistently able to explain significant
variance in fixation density above and beyond the center
bias baseline models in each task.

Discussion

We have shown in a number of recent studies that image
saliency is a relatively poor predictor of where people look
in real-world scenes, and that it is actually scene semantics

that guide attention (Henderson & Hayes 2017, 2018;
Henderson, Hayes, Rehrig, & Ferreira, 2018; Peacock,
Hayes, & Henderson, 2019). Here we extend this research
in a number of ways. First, the present work directly
quantified the role of model center bias and observer
center bias in overall performance of three image saliency
models and meaning maps across three different viewing
tasks. We found that for tasks that produced observer
center bias (i.e., memorization and aesthetic judgment),
the image saliency models actually performed significantly
worse than their respective center biases alone, while the
meaning maps performed significantly better than center
bias alone regardless of task. Second, our previous work has
exclusively used the graph-based saliency model (GBVS),
whereas here we tested multiple image-based saliency
models, demonstrating that center bias, image saliency, and
meaning effects generalize across different models with
different center biases. Finally, the temporal comparison
of model center bias alone relative to the full saliency
models shows clearly that early fixation density effects
are predominantly center bias effects, not image saliency
effects. Taken together, these findings suggest that image
salience theory does not offer a compelling account of
where we look in real-world scenes.

So why does image salience theory instantiated as image
saliency models struggle to account for variance beyond
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center bias? And why do semantic features succeed where
salient image features fail? The most plausible explana-
tion is the inherent difference between the semantically
impoverished experimental stimuli that originally informed
image saliency models, and semantically rich, real-world
scenes.

The foundational studies that visual salience theory was
built upon used singletons like lines and/or basic shapes
that varied in low-level features like orientation, color,
luminance, texture, shape, or motion (For review see Des-
imone & Duncan 1995; Itti & Koch 2000; Koch & Ull-
man 1985). Critically, the singleton stimuli in these studies
lacked any semantic content. The behavioral findings from
these studies were then combined with new insights from
visual neuroscience, such as center-surround receptive field
mechanisms (Allman, Miezin, & McGuinness, 1985; Des-
imone, Schein, Moran, & Ungerleider, 1985; Knierim &
Essen 1992) and inhibition of return (Klein, 2000), to form
the theoretical and computational basis for image saliency
modeling (Koch & Ullman, 1985). When image saliency
models were then subsequently applied to real-world scene
images and found to account for a significant amount of
variance in scene fixation density, it was taken as evidence
that the visual salience theory scaled to complex, real-world
scenes (Borji, Parks, & Itti, 2014; Borji, Sihite, & Itti, 2013;
Harel et al. 2006; Parkhurst, Law, & Niebur, 2002; Itti &
Koch 2001; Koch & Ullman 1985; Itti et al. 1998). The end
result is that visual salience became a dominant theoreti-
cal paradigm for understanding attentional guidance not just
in simple search arrays but in complex, real-world scenes
(Henderson, 2007).

Our findings add to a growing body of evidence that
attention in real-world scenes is not guided primarily by
image salience, but rather by scene semantics. First, our
results add to converging evidence that a number of widely
used image saliency models account for scene attention
primarily through their scene-independent spatial biases,
rather than low-level feature contrast during free viewing
(Kümmerer, Wallis, & Bethge, 2015; Bruce et al. 2015).
Our findings generalize this effect to three additional scene-
viewing tasks: memorization, aesthetic judgment, and visual
search tasks. Second, our results show that meaning maps
are capable of explaining additional variance in overt
attention beyond center bias in all three tasks. These results
add to a number of recent studies that indicate that scene
semantics are the primary factor guiding attention in real-
world scenes (Henderson & Hayes 2017, 2018; Henderson
et al. 2018; Peacock et al. 2019; de Haas, Iakovidis,
Schwarzkopf, & Gegenfurtner, 2019).

In terms of practical implications, our results together
with previous findings (Tatler, 2007; Bruce et al., 2015;
Kümmerer et al., 2015) suggest that image saliency model
results should be interpreted with caution when used with

real-world scenes as opposed to singleton arrays or other
simple visual stimuli. Therefore, moving forward, it is
prudent when using image saliency models with scenes to
determine the degree of center bias in the fixation data and
quantify the role center bias is playing in the image saliency
model performance. These quantities can be measured and
visualized using the aggregate map-level methods used
here or other recently proposed methods (Kümmerer et al.
2015; Nuthmann, Einhäuser, & Schütz, 2017; Bruce et al.
2015). This will allow researchers to determine the relative
contribution of scene-independent spatial bias and scene-
dependent image salience when interpreting their data.

So where does this leave us? While image saliency theory
and models offer an elegant framework based on biolog-
ically inspired mechanisms, much of the behavioral work
suggesting that low-level image feature contrast guides
overt attention relies heavily on the use of semantically
impoverished visual stimuli. Our results suggest that image
saliency theory and models do not scale well to com-
plex, real-world scenes. Indeed, we found prominent image
saliency models actually did significantly worse than their
center biases alone in multiple studies. This suggests some-
thing critical is missing from image saliency theory and
models of attention when they are applied to real-world
scenes. Our previous and current results suggest that what is
missing are scene semantics.
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