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Abstract
Meaning mapping uses human raters to estimate different semantic features in scenes, and has been a useful tool in
demonstrating the important role semantics play in guiding attention. However, recent work has argued that meaning maps
do not capture semantic content, but like deep learning models of scene attention, represent only semantically-neutral image
features. In the present study, we directly tested this hypothesis using a diffeomorphic image transformation that is designed
to remove the meaning of an image region while preserving its image features. Specifically, we tested whether meaning maps
and three state-of-the-art deep learning models were sensitive to the loss of semantic content in this critical diffeomorphed
scene region. The results were clear: meaning maps generated by human raters showed a large decrease in the diffeomorphed
scene regions, while all three deep saliency models showed a moderate increase in the diffeomorphed scene regions. These
results demonstrate that meaning maps reflect local semantic content in scenes while deep saliency models do something
else. We conclude the meaning mapping approach is an effective tool for estimating semantic content in scenes.
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Stored semantic knowledge gained from experience is
thought to play an important role in how we guide our
attention in real-world scenes (Henderson, 2007; Henderson
et al., 2009). Unfortunately, estimating the role of semantic
content in scenes is difficult, which has limited the
study of scene semantics. To address this limitation,
we recently proposed a meaning mapping approach that
harnesses human raters’ semantic knowledge to estimate
the distribution of local semantic content across an entire
scene (Henderson & Hayes, 2017; 2018). However, recent
work has argued that meaning maps do not estimate
local semantic content, but instead like computational
deep saliency models, reflect semantically-neutral high-
level image features (Pedziwiatr et al., 2021). While we
believe the test used by Pedziwiatr et al. (2021) was
fundamentally flawed (see Henderson et al. 2021), it is
worth directly validating the assumption that meaning maps
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are sensitive to changes in local semantic content and are
not reducible to non-semantic image features. In the present
paper, we directly tested whether meaning maps and deep
saliency models are sensitive to changes in local semantic
content.

Cognitive guidance theory anchors our work, proposing
that when visually perceiving the real world, visual-spatial
attention is driven in large part by our understanding and
interpretation of what we are seeing, along with what we
are trying to accomplish (Henderson, 2003; 2007; 2011).
That is, attention is driven by semantic representations. The
evidence supporting this general idea has a long history
in visual cognition (Buswell, 1935; Yarbus, 1967) and is
supported by a growing body of behavioral and neural
evidence that attention in scenes is strongly influenced by
semantic content, which often overrides physical properties
in the control of attention (Einhäuser et al., 2008; Tatler
et al., 2011; Torralba et al., 2006; Henderson et al.,
2020; Kiat et al., 2022; Hayes & Henderson, 2021b).
This evidence has been observed in traditional attention
paradigms (Malcolm et al., 2016; Shomstein et al., 2019),
in simplified object displays (Nuthmann et al., 2019), and in
scene perception (Võ et al., 2019; Williams & Castelhano,
2019; Wu et al., 2014; Hwang et al., 2011; Malcolm et al.,
2016; Haas et al., 2019; Hayes & Henderson, 2021b).
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Fig. 1 Illustration of the patch diffeomorph procedure. Each scene
had the meaning of a single patch (a) removed using a diffeomor-
phic transformation (b). After the patch was diffeomorphed, the patch

diffeomorph’s edge was eroded (c) and an alpha ramp (d) was used to
smoothly blend the patch into the broader scene (e)

Meaning maps have served as an important tool to
investigate cognitive guidance theory by examining how the
spatial distribution of different types of semantic features in
a scene are associated with visual attention (Henderson &
Hayes, 2017; 2018; Henderson et al., 2019; Rehrig et al.,
2020; Henderson et al., 2021). It is worth emphasizing that
the meaning mapping approach is just a methodological tool
for generating the scene distribution of different semantic
features. Meaning maps are not a global model of scene
attention and no meaning map is meant to simultaneously
capture all aspects of scene semantics. In fact, quite the
opposite. We have generally used the meaning mapping
approach to target specific theoretical questions and/or to
isolate specific types of semantic features. For example, the
meaning map approach was initially introduced to estimate
local semantic density in scenes based on how recognizable
and informative scene regions are to directly compare
the predictions of image guidance and cognitive guidance
theories of scene attention (Henderson & Hayes, 2017;
2018). And in subsequent work, we have used the meaning
mapping approach to evaluate other types of semantic
features in scenes that are thought to guide attention
such as graspability and reachability (Rehrig et al., 2020;
Henderson et al., 2019). This subsequent work highlights
both the flexibility of the meaning mapping method to
study different isolated semantic features, and the principle
that the original local semantic density meaning maps are
only one semantic lens among many others. Therefore,
the semantic ‘meaning’ represented by a particular type
of meaning map is always explicitly defined by the rating
instructions in each study (i.e., informative, recognizable,
graspable, reachable, etc.). What these high-level semantic
features have in common is that they primarily rely
on stored semantic representations of objects and scene
categories.

Given this theoretical and empirical context, it was
recently proposed that the meaning maps from Henderson
and Hayes (2017) based on informative and recognizable
rating instructions do not estimate local semantic content, but

rather ‘semantically neutral high-level features’ (Pedziwiatr
et al., 2021). The basic argument offered by Pedziwiatr et al.
(2021) is that since a deep learning model without semantics
produces similar or better eye movement prediction than
the original meaning maps both generally, and specifically
for object-scene semantic inconsistency, meaning maps
must not represent semantic content. There are a number
of logical problems with this argument (see Henderson
et al. 2021) and it is not entirely clear what is meant
by ‘semantically neutral high-level features’1. What is
clear from Pedziwiatr et al. (2021), is that in their view
‘semantically neutral high-level features’ are distinct from
semantic content and that neither meaning maps nor deep
learning models directly reflect semantic content.

Therefore, the current experiment focused on this
clear distinction centered around semantic content by
experimentally testing whether meaning maps and/or
deep saliency models reflect local semantic content. To
test this idea, we created scene images in which local
semantic content was eliminated in a circumscribed, local
scene region (Fig. 1). Semantic information was locally
eliminated using a diffeomorphic transformation. The
diffeomorphic transformation was designed to preserve “the
basic perceptual properties of the image while removing
meaning” providing an ideal test for our question of interest
by serving as an adversarial image (Stojanoski & Cusack,
2014). If humans rate the patches that are used to create
meaning maps on the basis of visual rather than semantic
features, as has been proposed (Pedziwiatr et al., 2021), then
the regions without semantic content should not be rated
lower than those with semantic content. That is, if meaning
maps represent only semantically neutral image features,
then loss of local meaning but preservation of local image
features should have little effect on them. Furthermore, if
meaning maps and deep saliency models both reflect the

1Our best guess is they are referring to the features captured in the late
layers of the object recognition models like VGG-16 and VGG-19 that
feed into deep learning models.
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same type of non-semantic scene content, then elimination
of semantics should affect them both in the same way. On
the other hand, if meaning maps represent the semantic
content that crowd-sourced workers were asked to rate, then
eliminating that content should lead to a large decrease in
rated meaning and a resulting drop in represented meaning
at that location in the generated meaning maps, whereas
deep saliency models based on high-level visual features
should not show a reduction in salience value at those same
map locations.

Method

Participants

University of California, Davis undergraduate students
(N=164) with normal or corrected-to-normal vision partic-
ipated in the meaning rating study in exchange for course
credit. All participants were naive concerning the purposes
of the experiment and provided verbal or written informed
consent as approved by the University of California, Davis
Institutional Review Board.

Stimuli

The stimuli were 40 real-world scene images from
Henderson and Hayes (2017). These 40 scene stimuli
(1024 x 768 pixels) were altered by transforming one
circular region (205 pixel diameter) to remove its meaning
while preserving its image features (see Diffeomorphic
Transformation section below for details). Therefore, the
full scene set contained 80 scene images total: the 40
original scenes from Henderson and Hayes (2017) and the
same 40 scenes with a single diffeomorphed region.

Diffeomorphic transformation procedure

To remove the semantic content of a scene region while
preserving its image properties, we applied a diffeomorphic
transformation. The diffeomorphic transformation has
been shown to remove image meaning while preserving
the image properties better than phase scrambling, box
scrambling, or texture scrambling (Stojanoski & Cusack,
2014). We applied the diffeomorphic transformation from
Stojanoski and Cusack (2014) using the default parameters
(i.e., max distortion=15, step number=10) to one circular
region (205 pixel diameter, 4.2% of scene) in each of the 40
scenes. We then blended the diffeomorphed patch into the
scene using a radially symmetric linear alpha ramp (15 pixel
diameter) centered on the eroded edge of the patch. This
allowed us to seamlessly blend each diffeomorphed patch
into its broader scene (See Fig. 1).

Patch selection

The original scene meaning maps (Henderson & Hayes,
2017) and GBVS image saliency maps (Harel et al.,
2006) were used to identify the circular region (205 pixel
diameter) in each scene that was both high in meaning and
low in image salience, since our focus was manipulating
meaning while minimizing the changes to the underlying
image features. We identified patches that were high in
meaning and low in image salience using a simple weighted
sorting algorithm. The sorting algorithm computed the
average meaning value and GBVS image salience value for
each of the 108 candidate coarse patches in each scene. The
108 patches for given scene were then sorted with a weight
of 0.8 for their meaning value and a weight of 0.2 for their
image salience value to ensure a high-meaning region was
selected. The sixth item in the sorted list was selected as
it had the best tradeoff of high meaning values and lower
image salience values across the 40 scenes. This procedure
was repeated for each scene to select the diffeomorphed
region in each scene.

Meaningmaps

Meaning maps were then generated for each diffeomorphed
scene using the same meaning mapping procedure and same
instructions as Henderson and Hayes (2017) and Henderson
and Hayes (2018) (see https://osf.io/654uh/ for the code
and rating instructions and https://osf.io/ptsvm/ for the 40
scene meaning maps). Specifically, a meaning map was
created for each diffeomorphed scene by cutting the entire
scene into a dense array of overlapping circular patches
at a fine spatial scale (300 patches, diameter=87 pixels)
and coarse spatial scale (108 patches, diameter=205 pixels).
This procedure resulted in 12000 fine patches and 4320
coarse patches. Raters (N=164) then provided ratings of
300 random coarse or fine scene patches based on how
informative or recognizable they thought they were on a 6-
point Likert scale (Henderson & Hayes, 2017; Mackworth
& Morandi, 1967). Patches were presented in random order
and without scene context, so ratings were based on context-
independent judgments. Each unique patch was rated by
three unique raters, but due to the patch overlap and multiple
scales, each patch contained between 6 and 30 unique
ratings (mean=18.9, median=18).

A meaning map (Fig. 2) was generated for each
diffeomorphed scene by averaging the patch rating data
at each spatial scale separately, then averaging the spatial
scale maps together, and then smoothing the grand
average rating map with a Gaussian filter (i.e., Matlab
‘imgaussfilt’ with σ = 10, FWHM=23 pixels). These new
diffeomorphed meaning maps were then compared to the
original meaning maps that did not contain a diffeomorphed
region (Henderson & Hayes 2017, https://osf.io/ptsvm/).

https://osf.io/654uh/
https://osf.io/ptsvm/
https://osf.io/ptsvm/
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Fig. 2 Example scene, scene diffeomorph, patch difference, and mean-
ing and deep saliency model map critical patch comparisons. Each
scene had a region that had its meaning removed using a diffeo-
morphic transformation. The diffeomorphed scene region was then

used to compare how meaning maps, DeepGaze II, SAM-ResNet, and
MSI-Net responded to the original patch and its diffeomorph. The
right column shows the mean difference in the diffeomorphed region
activity for each map type
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Deep saliencymodels

We compared three state-of-the-art deep saliency models
(Bylinskii et al., 2012): DeepGaze II (Kümmerer et al.,
2016), the multi-scale information network (MSI-Net,
Kroner et al. 2020), and the saliency attentive model (SAM-
ResNet, Cornia et al. 2018) on the scenes with and without
the diffeomorphed patches. Each deep saliency model takes
a scene image as input and produces a predicted saliency
map as output that reflects where the model predicts human
observers will look in that scene. All of the deep saliency
models contain pre-trained object recognition weights that
are fixed and then subsequent network layers that are trained
on human data in the form of fixation and/or mouse-
contingent density maps that reflect where humans focus
their attention in scenes (Deng et al., 2009; Simonyan &
Zisserman, 2015; Kroner et al., 2020; Kümmerer et al.,
2016; Cornia et al., 2018). The deep saliency model weights
are fixed following training, and then the models are
evaluated on new scenes and fixation data. DeepGaze II,
MSI-Net, and SAM-ResNet each have distinct network
architectures, training regimens, center bias priors, and
loss functions and represent a good cross section of deep
convolutional neural network models of scene attention.

Map standardization

In order to allow for comparisons across the different map
types (i.e., Meaning, DeepGaze II, SAM-ResNet and MSI-
Net) and conditions (original and diffeomorphed) every map
was standardized to a common unit of standard deviations
(i.e., mean=0 and std=1) prior to the statistical analyses.

Results

The main result comparing the diffeomorphed scene patches
to the original scene patches within each model are clear
(Fig. 3). The meaning maps showed a significant decrease
in meaning ratings for the diffeomorphed patch relative to
the original scene patch (t (39) = −22.81, padj < .001,
95% CI [−1.60, −1.34]). This finding is consistent with the
idea that meaning maps represent local semantic content,
not simply semantically neutral image features. In contrast,
all the deep saliency models showed a significant increase
in values for the diffeomorphed patch relative to the original
scene patch (DeepGaze II, t (39) = 5.39, padj < .001, 95%
CI [0.14, 0.30]; SAM-ResNet, t (39) = 4.75, padj < .001,
95% CI [0.18, 0.45]; MSI-Net, t (39) = 5.08, padj < .001,
95% CI [0.20, 0.48]; padj=Bonferroni correction). That is,
the deep saliency models did not just fail to detect that the
semantic content had been removed, they actually showed
increased activity in the diffeomorphed patch relative to the
original patch. Together these findings starkly demonstrate

that meaning maps generated by human raters directly
reflect local semantic content whereas deep saliency models
do not.

In addition, we compared the diffeomorph effect
between models using a one-way Analysis of Variance
(ANOVA) on the map type difference values (Fig. 3c).
The results indicated a significant difference between
the map types (F(3, 156)=211.79, p < .001). A post-
hoc comparison using Tukey’s HSD test for multiple
comparisons (FWER=0.05) indicated that meaning maps
were significantly different from each deep saliency model
(DeepGaze II: padj < 0.001, 95% CI [1.47, 1.91]; SAM-
ResNet: padj < 0.001, 95% CI [1.56, 2.01]; MSI-Net:
padj < 0.001, 95% CI [1.59, 2.03]). The deep saliency
models were not significantly different from one another
(DeepGaze II and MSI-Net: padj = 0.48, 95% CI
[−0.10, 0.35]; DeepGaze II and SAM-ResNet: padj =
0.64, 95% CI [−0.12, 0.32]; MSI-Net and SAM-ResNet:
padj = 0.90, CI [−0.25, 0.20]). These results indicate
that the meaning map diffeomorph effect was significantly
different from all the deep saliency models, while the deep
saliency models exhibited comparable diffeomorph effects
among themselves.

Finally, we estimated the mean difference between
the original scenes and the diffeomorphed scenes for
all the non-diffeomorphed scene regions for each map
type. The results indicated the non-diffeomorphed regions
were highly consistent for each map type (Meaning:
mean=-0.0025, std=0.0178; DeepGaze II: mean=-0.0006,
std=0.0056; SAM-ResNet: mean=0.0005, std=0.006; MSI-
Net: mean=0.0001 std=0.004) and were not significantly
different from zero (Meaning: t (39) = −0.89, p =
0.38, 95% CI [−0.008, 0.003]; DeepGaze II: t (39) =
−0.71, p = 0.48, 95% CI [−0.002, 0.001]; SAM-ResNet:
t (39) = 0.49, p = 0.63, 95% CI [−0.002, 0.002]; MSI-
Net: t (39) = 0.22, p = 0.83, 95% CI [−0.001, 0.001]).
These findings strongly suggest our main results are not due
to variability in the different rater groups used in the two
meaning map studies or any kind of anomalous behavior in
the deep saliency models we tested.

Discussion

In our work, we argue that attention in real-world scenes
is primarily driven by semantic representations of what we
are seeing and our current goals. Under this theoretical
view, image features play a role in defining potential
targets for attention, but it is semantic content that
determines attentional priority. Here we provided a simple
demonstration that one of the tools we have been using
to test this theory (i.e., meaning maps) do reflect local
semantic content, while deep saliency models do not.
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Fig. 3 Critical patch meaning map and deep saliency model compar-
isons: original and diffeomorph spatial difference, distributions, and
differences by map type. Each sub-panel in panel (a) shows the mean
difference spatially across the critical diffeomorphed scene region
(indicated by neon green circle in each panel) averaged across all 40
scenes for each map type (Meaning, DeepGaze II, SAM-ResNet, and

MSI-Net). Panel (b) shows the mean critical patch value for each scene
(original vs. diffeomorph) for each map type. Panel (c) shows the dif-
ference in the diffeomorphed condition relative to the original scene
value for each map type. Only meaning maps consistently detected the
removal of semantic content from the diffeomorphed scene regions

That is, we found that meaning maps showed a large
localized decrease when semantic content was removed
from a scene region using a diffeomorphic transformation.
In comparison, all of the deep saliency models we tested
showed increased localized activity when the semantic
content was removed. These findings demonstrate both that
human generated meaning maps estimate local semantic
content in scenes, and that meaning maps are not reducible
to the features captured by deep saliency models as
suggested by Pedziwiatr et al. (2021).

The present work supplements our previous work in
a couple of important ways. First, while our previous
work provides indirect evidence that meaning maps capture

semantic content (e.g., when the rating instructions to
the participants change, the meaning maps change),
the current study provides direct evidence by actively
manipulating local meaning while keeping the rating
instructions constant. Second, the current study through
its direct comparison of meaning maps and deep saliency
models on the same active local meaning manipulation, is
the only study that demonstrates that meaning maps are not
reducible to deep saliency models. The indirect evidence we
previously provided (Henderson et al., 2021) in conjunction
with the direct evidence provided in current study, strongly
suggests that meaning maps generated from human raters
reflect semantic content.
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Moving forward, it is important to keep in mind that the
meaning mapping approach is not a theory, it is a tool to
test theory. For example, when we first introduced meaning
maps, they were used as a targeted method to generate
a semantic analogue to a low-level image saliency map.
This allowed us to test cognitive guidance theory against
image guidance theory. That is, we used meaning maps to
determine whether contrasts in local pre-semantic image
features, or local semantic density, were a stronger predictor
of attention across entire scenes (Henderson & Hayes,
2017). Since our original paper the meaning mapping
approach has been used to test cognitive theory in a wide
range of areas including scene memory (Bainbridge et al.,
2019; Ramey et al., 2020), language production (Ferreira
& Rehrig, 2019; Henderson et al., 2018; Rehrig et al.,
2020), mind wandering (Krasich et al., 2020; Zhang et al.,
2021), active vision in VR environments (Haskins et al.,
2020), infant development (Klotz et al., 2021), and in
the brain (Henderson et al., 2020; Kiat et al., 2022). The
approach has also been extended to investigate other types
of semantic features in scenes, such as reachability and
graspability (Rehrig et al., 2020). These examples highlight
the productive role the meaning mapping approach can play
as a tool for testing cognitive theories of attention in scenes.

It is also worth repeating that meaning maps are not
meant to be a global model of scene attention. That is,
meaning maps are not trying to predict the maximum
amount of total variance possible in looking behavior. The
purpose of meaning maps is actually the opposite of a global
model; meaning maps target and isolate specific semantic
components that are theorized to be relevant to attention
in scenes. In contrast, deep saliency models are global
models of scene attention because they are directly trained
on human fixation data over scenes and are optimized
to account for the maximum variance possible in those
data. As a result, deep saliency models learn to leverage a
very broad set of different image features and regularities
in human fixation data to predict attention (Hayes &
Henderson, 2021a; Kümmerer et al., 2019). For this reason,
to directly compare the overall prediction of deep saliency
models to the isolated features of the meaning mapping
approach (Pedziwiatr et al., 2021) is to miss the purpose
of the meaning mapping approach entirely (Henderson
et al., 2021). Succinctly, meaning maps are a flexible tool
useful for testing the role of isolated components of scene
semantics, which can then be used to guide explanatory
theory building. They are not a global predictive model of
scene attention to be benchmarked.

In summary, we used a local diffeomorphic transform
to test whether meaning maps and visually-based deep
saliency models would reflect the loss of local meaning. The
results were clear: meaning maps generated by human raters
showed a large decrease in the diffeomorphed scene regions,

while all three deep saliency models showed a moderate
increase in the diffeomorphed scene regions. Therefore, we
conclude that meaning maps (Henderson & Hayes, 2017)
estimate local semantic content and can continue to serve as
a flexible tool for studying semantics in real-world scenes.
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