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ABSTRACT

Humans rapidly process and understand real-world scenes with ease. Our stored semantic
knowledge gained from experience is thought to be central to this ability by organizing
perceptual information into meaningful units to efficiently guide our attention. However, the
role stored semantic representations play in attentional guidance remains difficult to study and
poorly understood. Here, we apply a state-of-the-art vision-language transformer trained on
billions of image-text pairs to help advance our understanding of the role local meaning plays
in scene guidance. Specifically, we demonstrate that this transformer-based approach can be
used to automatically estimate local scene meaning in indoor and outdoor scenes, predict
where people look in these scenes, detect changes in local semantic content, and provide
multiple avenues to model interpretation through its language capabilities. Taken together,
these findings highlight how multimodal transformers can advance our understanding of the
role scene semantics play in scene attention by serving as a representational framework that
bridges vision and language.

INTRODUCTION

Semantic knowledge is central to how we perceive and make sense of the complex visual
world around us (Murphy, 2004; Reilly et al., 2025). While semantic representations are com-
monly thought of in linguistic terms as the mapping of a word or phrase to a specific object or
concept, semantic representations also organize perceptual information into meaningful units
that help to efficiently guide our attention in scenes (Henderson, 2007, 2011). Therefore,
improving our understanding of the interplay between semantic representations and attention
in scenes has the potential to have both broad theoretical impact and to advance a variety of
nascent technologies which require rapid scene understanding (e.g., autonomous cars and
other agents). While scene semantics are difficult to study and remain poorly understood, recent
advancements have made their study more tractable (Hayes & Henderson, 202 1h; Henderson &
Hayes, 2017). Here we take another step toward understanding semantics in scenes by applying
a state-of-the-art vision-language transformer (Yu et al., 2022) to accurately estimate local scene
meaning, predict scene attention, and provide a direct route to interpreting estimates of local
scene meaning.
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Real-world Scene

Cognitive guidance theory is the theoretical framework anchoring our work (Henderson,
2003, 2011). Under this view, semantic knowledge stored in memory ‘pushes’ our attention
toward scene regions that are recognizable, informative, and relevant to our current goals
(Biederman, 1972; Henderson & Hollingworth, 1999; Land & Hayhoe, 20071; Potter, 1975;
Wolfe & Horowitz, 2017). That is, where we look in scenes is primarily driven by semantic
representations that guide our attention toward meaningful scene regions. There is a long
history of evidence supporting the relationship between semantic properties and attention
in scenes (Antes, 1974; Buswell, 1935; Loftus & Mackworth, 1978; Mackworth & Morandi,
1967; Torralba et al., 2006; Williams & Castelhano, 2019; Yarbus, 1967), including demon-
strations that scene semantics often supplant nonsemantic visually salient scene regions (Vo
etal., 2019; Williams & Castelhano, 2019; Wu et al., 2014). However, one major limitation
of much of this earlier work is that it often focused on isolated object-scene semantic rela-
tionships (e.g., swapping an octopus and a tractor in an underwater and farm scene respec-
tively; Loftus & Mackworth, 1978). While these discrete semantic manipulations were
important in establishing a causal relationship between scene semantics and attention, they
do not tell us much about the overall role of semantic guidance of attention in scene under-
standing (Henderson & Hayes, 2017).

Two recent studies introduced different approaches to studying the effects of scene seman-
tics globally across entire scenes: meaning maps (Henderson & Hayes, 2017) and concept
maps (Hayes & Henderson, 2021b). Meaning maps use human raters to estimate a given
semantic feature at each location in the scene. Specifically, each scene (Figure 1a) is broken
into small circular image patches at two spatial scales (Figure 1b), and then participants rate a
random subset of these image patches based on a given semantic instruction (e.g., meaningful,
informative and recognizable; Henderson & Hayes, 2017). These ratings are then combined
back into their respective position to form a map of local scene meaning. Local scene meaning
has repeatedly been shown to be one of the strongest predictors of where people look in
scenes regardless of the viewing task (See Henderson et al., 2019, for review). In addition
to local meaning maps, we also developed a separate language-based approach using a vector
space semantic model called ConceptNet Numberbatch (Hayes & Henderson, 2021b). Con-
ceptNet Numberbatch derives the semantic relationships between words based on regularities
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Figure 1. Meaning mapping and input/target preprocessing. A meaning map for each scene (a) is built by breaking each scene into circular
patches at two spatial scales (b) and then having humans rate the patches. The human patch ratings are then recombined to generate a scene
meaning map (c). To train DeepMeaning, each scene image (a) and meaning map (c) were broken into patches using a square grid (c). The
square scene image patches served as the input to the pretrained Vision transformer (ViT) of the Contrastive Captioner (CoCa) while the aver-
age meaning map value of each square region served as the target value to be predicted. Raincloud plots of the distribution of the meaning
target values for indoor and outdoor scenes were normally distributed (d).
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in almost a trillion words of written text and crowd-sourced basic knowledge about the world
(Gunther et al., ). The semantic representations from ConceptNet can then be mapped
back onto the objects in a scene to form a ‘concept map’ that reflects how semantically related
each object is to the rest of the scene, which is also strongly associated with scene attention
(Hayes & Henderson, ).

Therefore, meaning maps and concept maps each approach scene semantics from a different
angle. Meaning maps are constructed by filtering a visual stimulus through the cognitive system
of human raters to estimate semantic properties in scenes (e.g., local meaning, Henderson &
Hayes, ; graspability, Rehrig et al., ; interaction, Rehrig et al., ), while concept
maps (Hayes & Henderson, ) are non-visual, building semantic representations based
entirely on regularities in human-generated language. However, humans often acquire semantic
knowledge through an interplay of visual and language experience (Clarke & Tyler, ; Ralph
etal., ), so scene semantics may best be understood within a computational framework that
forms a multimodal mapping between vision and language.

Here we apply just such a framework, a state-of-the-art Contrastive Captioner (CoCa)
which serves as a foundational vision-language representational model (Yu et al., ).
While transformers have played a large role in natural language processing, it is only
recently that transformers have been generalized to also include visual and multimodal
vision-language domains (Dosovitskiy et al., ; Vaswani et al., ; Yu et al., ).
CoCa in particular recently introduced a unique architecture that unifies many of the
strengths of previous transformer architectures (i.e., single encoder, dual encoder, and
encoder-decoder), allowing CoCa to learn aligned unimodal text and image embeddings
as well as a fused multimodal image-text representational space (Yu et al., ). It is this
unique ability that allows CoCa to learn very general representations that achieve state-of-
the-art performance across virtually every major vision, language, and multimodal bench-
mark (Yu et al., ). CoCa has proven successful in the large and growing transformer
benchmarking literature. Importantly, our primary goal here is not to further benchmark
CoCa against other models, but rather to test whether the general CoCa feature space can
be used to both estimate and interpret local scene meaning. That is, we apply CoCa as a tool
to investigate the role of human conceptual knowledge in the interplay between attention
and scene understanding.

In the present study, we used the feature space of CoCa to train a linear model to estimate

local meaning ( ), predict attention ( ), and interpret local scene meaning
( and 5) in an application we call ‘DeepMeaning’. The overview of how DeepMeaning
estimates local scene meaning is shown in , and can be broadly split into a feature

extraction stage and a leave-one-scene-out cross-validation stage. In the feature extraction
stage, we take the CoCa model pretrained on more than 2 billion unique image-text pairs
( , purple) and use it to generate CoCa features for each local scene region by breaking
each scene into smaller patches using a square grid ( , white). Then, we train a linear
model ( , red) for indoor scenes and a linear model for outdoor scenes where we use
these general CoCa features for the scene patches as predictors to estimate local meaning using a
leave-one-scene-out training and testing procedure ( , grey). Indoor and outdoor scenes
were modeled separately because there is evidence that they are behaviorally (Torralba et al.,

) and neurally distinct (Henderson et al., ). A direct comparison of the linear indoor
and outdoor weights showed they only shared about 11% of their variance, providing additional
justification for separate indoor and outdoor models. Using this general procedure, we evaluated
DeepMeaning based on meaning recovery (local patches and full scenes), attention prediction,

OPEN MIND: Discoveries in Cognitive Science 1022

§20g 42q0j00 90 Uo Jasn SIAVA ON Aq jpd-g e’ iwdoyy /€. ¥Ge/9 e 1wido/zg | L 0L /10p/ypd-ajone/ido/npa iwjoaup;/:dpy woly papeojumoq



DeepMeaning: Estimating and Interpreting Scene Meaning for Attention

Hayes and Henderson

a b 4 d
. o o o
LAION 2 Meaning Meaning £ M Indoor Patches = B Outdoor Patches M Indoor Scenes
Pretraining 5 Training Prediction 8 54 R.=0.89 854 Atoss B Outdoor Scenes
Pt o EVT et VTV
& Test Patch ] S
c:mr_astwe => § Linear K| Fechies E ol E N
©
(CoC: o Model o s
(Gocs) = Predicted £ £
< Ratings ] 34 ] 3 3
A5 4} 4} 0 3
= :
kS
Image & fl;i E} 2 82_ $2<
Text Pairs | | £ % £ _fg g
5 E
<) All Patches K i % % 5
I 5 17 5 19
o |8 o o
HRE = NN N = —1 . . , !
:;?n‘;"{,’,mwe =g E 1 2 3 4 5 1 2 3 4 5 00 02 04 06 08 10
grass looking| Al Scenes | | Observed Human Patch Rating Observed Human Patch Rating DeepMeaning & Human Meaning (Rc,)
at each other | spiit by Grid ing|
J
% %

Leave-one-scene-out
Cross-validation

Contrastive Captioner
Feature Extraction

Figure 2. DeepMeaning overview and meaning recovery results. DeepMeaning combines the features from a Contrastive Captioner (CoCa)
transformer pretrained on billions of image-text pairs with a linear model to predict patch meaning ratings (a). The scatterplots (b-indoor,
c-outdoor) show DeepMeaning’s patch-level meaning prediction relative to human meaning ratings where each dot in the plot represents
an individual scene patch. The raincloud plots (d) show the distribution of the correlations between the DeepMeaning predicted meaning
map and the ground truth human meaning map, where each dot represents a left-out indoor or outdoor scene.

ability to detect changes in semantic content, and model interpretability. These four criteria can
broadly be seen as evaluating the two major goals of the present manuscript: showing that a
multimodal transformer can serve as a tool that provides image-computable local scene mean-
ing ratings with human-like characteristics, and demonstrating that the aligned vision-language
feature space can be used to directly interpret estimates of local scene meaning.

While the practical benefit of an image-computable method to estimate local scene mean-
ing without collecting thousands of human patch ratings is clear, the interpretive ability offered
by a vision-language model is equally important. In traditional vision-only approaches, a deep
neural network (convolutional neural network or vision transformer) is trained to map a visual
input to an output (e.g., object categories). However, between the visual input and the model
output are dozens of hidden layers composed of thousands of units that make it notoriously
hard to understand exactly what features these models rely on to make their estimates (Bowers
et al., 2022). And while in some domains all that matters is how well a model performs, in
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Figure 3. DeepMeaning maps transfer to predict scene attention just like human meaning maps. Raincloud plots show that DeepMeaning
maps (a) and human meaning maps (b) both correlate strongly with scene attention. Moreover, the correlations between human meaning maps
and attention and DeepMeaning maps and attention were very similar (R, = 0.90) scene to scene (c). Finally, we applied DeepMeaning to an
additional scene dataset with fewer observers (CAT2000) and replicated a strong correlation between DeepMeaning maps and scene attention

(d) for both indoor and outdoor scenes.
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Figure 4. DeepMeaning detects the removal of semantic content. We applied DeepMeaning to 40 scenes where semantic content was
removed while preserving image features via a diffeomorphic transform (a, d). DeepMeaning passed this semantic content test just like human
meaning maps, showing a large decrease in meaning value for the diffeomorphed scene region relative to the original non-diffeomorphed
scene region (b). The mean difference in rating is shown spatially by averaging across the critical region (c). Additionally, we used CoCa to
decode captions for the original and diffeomorphed image patch (d), revealing that CoCa could no longer identify a mapping between seman-
tically meaningful objects, offering a human-interpretable explanation for the drop in meaning values.

cognitive science, being able to interpret how a model makes its predictions is in many ways
just as important as the estimates themselves. Simply put, black boxes are not conducive to
guiding cognitive theory no matter how well they can map inputs to outputs. Multimodal trans-
formers offer a potential solution by aligning visual and linguistic features, enabling direct inter-
pretation of model behavior through language. Specifically, this vision-language alignment
enables two direct paths to interpretation: generating natural language descriptions of local
scene regions, and using contrastive prompts to test how model estimates align with specific,
user-defined semantic features.

METHODS

Contrastive Captioner (CoCa)

We selected the Contrastive Captioner (CoCa) model (Yu et al., 2022) as our embedding space
because its vision-language architecture generates general features well-suited for downstream
tasks, while also providing direct avenues for interpretation. In our investigation, CoCa embed-
dings also outperformed two vision-only transformer baselines: the Self-distillation with No
Labels (DINO, Caron et al., 2021) model and the Masked Autoencoder (MAE, He et al.,
2021) model-in both patch-level and scene-level meaning prediction (see supplementary
materials). These results suggest that language-aware embeddings enhance local meaning pre-
diction, further validating our choice of CoCa for our embedding space.

We used the OpenClip Contrastive Captioner (CoCa) implementation (coca_ViT-L-14 with
the mscoco_finetuned_laion2b_s13b_b90k pretrained weights, llharco et al., 2021) based on
the original CoCa model by Yu et al. (2022). The OpenClip CoCa model was pretrained on
13 billion samples from the LAION-2B dataset using a batch size of 90,000, a learning rate
of 1e-3, and a cosine decay learning rate schedule (Schuhmann et al., 2022). These weights
(728 dimensional feature space) were then finetuned using the Microsoft COCO dataset (Lin
etal., 2014) using a batch size of 128, a learning rate of Te-5, and a cosine learning rate sched-
ule (Schuhmann et al., 2022). The LAION-2B dataset is the English subset of the larger multi-
lingual LAION-5B dataset. The LAION-2B dataset is an open dataset for model training that
contains 2.32 billion image-text pairs (Schuhmann et al., 2022).
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DeepMeaning

Scene Preprocessing. Each scene and its corresponding meaning map were split into 128 x 128
pixel square patches with 73% overlap ( ). Patch overlap was used based on previous
meaning map work showing a benefit to overlap for recovering known visual features (Henderson
& Hayes, ). Each square scene image served as an input to the vision transformer (ViT) com-
ponent of CoCa for feature extraction. The meaning value for each square scene region was
computed as the average across its location in the corresponding human meaning map and
served as the target value to be predicted by DeepMeaning ( ).

Architecture. DeepMeaning is composed of two components: a pretrained Contrastive Cap-
tioner (CoCa) transformer that is used as a feature extractor and a linear model that is trained to
use these extracted features to predict human scene meaning ratings. Specifically, the pre-
trained weights (728 dimensional feature space) learned by the Contrastive Captioner by train-
ing on the LAION-2B dataset were frozen, and then used to extract general features from each
square scene image patch ( ). The extracted image patch features and their corre-
sponding meaning ratings were then used to train a linear model to predict meaning ratings
for indoor and outdoor scene patches separately using a leave-one-scene-out cross-validation
procedure.

Leave-one-scene-out cross-validation procedure. The leave-one-scene-out train/test cross valida-
tion procedure was used to estimate the generalization performance of DeepMeaning on our
training scene set (N = 282). In this procedure, the linear model component of DeepMeaning
was trained on all scenes but one, and then the trained linear model weights were frozen and
used to predict the meaning values for the left-out-scene image patches. This procedure was
done separately for indoor (N = 139) and outdoor scenes (N = 143) producing a separate set of
linear weights for indoor and outdoor scenes.

DeepMeaning Ensemble Indoor and Outdoor Models. To mitigate overfitting, we employed model
averaging across all cross-validation folds to generate the final DeepMeaning linear models for
indoor and outdoor scenes. For each leave-one-scene-out fold, we saved the model weights
and intercept. The final ensemble models were then created by averaging these parameters
across all folds—139 folds for indoor scenes and 143 folds for outdoor scenes. This ensemble
approach produced two robust models capable of predicting meaning in novel scenes: one
optimized for indoor environments and another for outdoor environments.

The ensemble indoor and outdoor DeepMeaning linear models were validated on a dataset
not used to train the models (CAT2000 dataset, Borji & ltti, ). The ensemble models
(‘DeepMeaning_indoor_ensemble.pkl’ and ‘DeepMeaning_outdoor_ensemble.pkl’) are the
model weights used in our provided Python code (see batch_deep_meaning.py) to allow users
to generate DeepMeaning maps for novel indoor and outdoor scenes.

The decision to fit separate linear models for indoor and outdoor scenes was made a priori
based on previous evidence that indoor and outdoor scenes are distinct (Henderson et al.,
; Torralba et al., ). In addition, a post hoc comparison of the DeepMeaning ensemble
indoor and outdoor weights provided converging evidence for fitting separate indoor and out-
door models. The squared correlation showed the indoor and outdoor model ensemble
weights only shared 11% of their variance (R*> = 0.11) and were significantly different (paired
samples t-test of the absolute difference between indoor and outdoor DeepMeaning weights;
{(767) = 35.95, p < 0.001, 95% CI [0.63, 0.71]).
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Meaning Map Data

Participants. University of California, Davis undergraduate students (N = 1149) with normal or
corrected-to-normal vision participated in the meaning rating study in exchange for course
credit. All participants were naive concerning the purposes of the experiment and provided
verbal or written informed consent as approved by a University Institutional Review Board.
All experiments were performed in accordance with relevant guidelines and regulations.

Stimuli. 282 real-world scene images were meaning mapped. The 282 scenes consisted of a
mix of indoor (139) and outdoor (143) scenes and included scenes from 100 unique scene
categories (e.g., kitchen, office, park, street, etc.).

Meaning Mapping Procedure. Meaning maps were generated for each scene using the same
meaning mapping procedure and rating instructions (see for the code
and complete rating instructions) as Henderson and Hayes ( ). Specifically, a meaning
map was created for each scene by dividing the entire scene into a dense array of overlapping
circular patches at a fine and coarse spatial scale (see ). Human raters then provided
ratings of 300 random fine or coarse scene patches based on how informative or recognizable
they thought they were on a 6-point Likert scale (Henderson & Hayes, ; Mackworth &
Morandi, ). Patches were presented in random order and without scene context, so rat-
ings were based on context-independent judgments. Each unique patch was rated by three
unique raters.

A meaning map ( ) was generated for each scene by averaging the patch rating data
at each spatial scale separately and then averaging the spatial scale maps together.

Estimate of Human Rater Noise Ceiling. An estimate of the noise ceiling was computed to esti-
mate how well DeepMeaning could potentially perform given the noise in human ratings of
meaning. To perform this estimate we compared meaning maps from 40 scenes (34 indoor,
6 outdoor) from two different groups of raters in two previous studies (Hayes & Henderson,

; Henderson & Hayes, ). These correlations were performed by excluding the diffeo-
morphed region (about 4 percent of scene) in each scene and then computing the correlation
for the remaining 96% of the scene. Since the correlations were not normally distributed, we
used bootstrapping to estimate the 95% confidence intervals around the mean correlation coef-
ficient (10000 bootstrap samples). This provided a more robust estimate of the noise ceiling that
does not assume normality in the sampling distribution.

Eyetracking Datasets

Dataset 1: Internal. Eye tracking data from a large dataset were used to verify DeepMeaning’s
ability to transfer to predict scene attention (Cronin et al., ; Hayes & Henderson, ).
This global dataset contained 49 indoor scenes and 51 outdoor scenes spanning 100 unique
scene categories. Each scene was viewed for 12 seconds by 100 observers. Observers per-
formed a scene memorization task for half the scenes and an aesthetic judgment task for
the other half of the scenes. Task instruction order was counterbalanced across observers
and scenes such that all observers viewed all 100 images and each of the 100 images
appeared equally under the two viewing task conditions. Since viewing task is not relevant
for the question at hand, we performed our analysis below pooled across all the data. Observer
eye movements were recorded using an EyeLink 1000+ tower-mount eye tracker (spatial res-
olution 0.01°) sampling at 1000 Hz SR Research ( ). Participants sat 85 cm away from a
21" monitor and viewed scenes that subtended approximately 27° x 20° of visual angle.
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Dataset 2: External. Additionally, one hundred indoor and outdoor scenes from the CAT2000
benchmark eye tracking dataset served as an additional replication of DeepMeaning’s ability
to estimate local meaning that transfers to predict scene attention in datasets with a smaller

number of observers and shorter viewing duration (Borji & ltti, ). Each scene in the
CAT2000 dataset was freely-viewed by 24 observers for 5 seconds while their eye movements
were recorded using an EyelLink 1000 eye tracker (SR Research, ).

Diffeomorph Data

The diffeomorph scene set from Hayes and Henderson ( ) was used to assess whether
DeepMeaning could successfully detect the local removal of semantic content from a scene.
The diffeomorph dataset contained 40 scenes in two conditions: diffeomorphed (Hayes &

Henderson, ) and original (data from Henderson & Hayes, ). In the diffeomorph con-
dition, a diffeomorphic transformation (max distortion = 15, step number = 10, Stojanoski &
Cusack, ) was applied to one local circular region (205 pixel diameter) and then blended

into each scene using a radially symmetric linear alpha ramp (15 pixel diameter) to remove the
semantic content from the target region while preserving its image features (Hayes & Henderson,

). In the original condition, the scenes were presented unaltered. Human meaning ratings
were collected for both the original scenes (N = 164) and the diffeomorphed scenes (N = 164)
using the same Meaning Mapping Procedure described above.

Interpretation Analyses

Caption analysis. To interpret DeepMeaning’s outputs, we analyzed CoCa-generated captions
for scene patches before and after diffeomorphic transformation. This approach provided nat-
ural language descriptions of how semantic content changed following spatial transformation.
We input both original and diffeomorphed circular images as square patches with black
boundaries to accommodate CoCa’s square input requirement ( ). For each scene
(N = 40) and condition (original and diffeomorph), we generated captions for the target scene
region using the same CoCa caption generation parameters (5% quantile token generation,
temperature = 1.5, and repetition penalty = 22, Ilharco et al., ).

Our caption analysis examined two aspects: (1) caption accuracy — whether captions cor-
rectly described the original patch content (yes or no), and (2) object count changes — the
percentage decrease in identified objects between original and diffeomorph captions. The
authors performed the first analysis through direct visual comparison of patches and captions,
and the second analysis by counting the number of objects in each caption. These metrics
quantified the general loss of semantic content and specific changes in object recognition fol-
lowing diffeomorphic transformation, demonstrating how visual-language models’ caption
generation ability can provide interpretable insights into local semantic changes.

Semantic Projection Analysis. We developed a contrastive prompting method using CoCa'’s
vision-language embeddings to analyze how specific semantic dimensions contribute to local
meaning and attentional guidance. For four dimensions (object density, interaction potential,
figure-ground organization, and local context consistency), we created paired prompts describ-
ing the presence versus absence of each semantic attribute. Converting these prompt pairs to
CoCa text embeddings and calculating their difference vectors defined semantic directions in
the embedding space. Projecting each patch’s image embedding onto these directions yielded
scalar scores quantifying each individual patch’s alignment with each semantic dimension.
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We analyzed 49 indoor scenes from eye tracking dataset 1 to allow a comparison to Deep-
Meaning estimates, human meaning ratings, and attention. Indoor scenes were chosen for this
demonstration since they are less noisy than outdoor scenes and contain more semantic con-
tent. For each semantic dimension of interest, we compared the semantic patch projection
scores against three patch measures: DeepMeaning estimate, mean human meaning rating,
and mean fixation density. We calculated both total variance explained and unique contribu-
tions of each predictor, revealing how concrete semantic attributes influence local meaning
estimates and attention allocation.

Dominance analysis and its interpretation. We performed a dominance analysis (Azen &
Budescu, , ) to quantify each semantic direction’s unique contribution to the total
variance explained in DeepMeaning estimates, human meaning ratings, and attention (since
the semantic directions were not orthogonal, see ). Dominance anal-
ysis estimates the relative importance of individual predictors in multiple regression by calcu-
lating the average increase in R-squared when a predictor is added to all possible subset
regression models. In our analysis, for each contrastive semantic direction, we computed its
average contribution to R? across all possible subsets of predictors. The contribution for each
subset size was weighted by the number of combinations containing that predictor. These con-
tributions were then normalized and multiplied by 100 to yield percentages of the total
explained variance for each semantic direction to DeepMeaning estimates, human meaning
ratings, and attention (e.g., in , object density accounted for 25.3% of the total variance
in DeepMeaning ratings).

The dominance analysis results are most interpretable for DeepMeaning because its max-
imum explainable variance is R* = 1.0 because DeepMeaning’s estimates and the semantic
projections are both derived directly from the same CoCa embedding space. In contrast,
human meaning ratings have a noise ceiling of approximately R = 0.87 due to inter-rater var-
iability, while attention data is similarly limited by individual viewing patterns, task dependen-
cies, and eye tracking measurement noise (a leave-one-subject out cross validation of fixation
density provided an estimated maximum of R* = 0.56). For this reason, DeepMeaning R?, pro-
vides the clearest measure of each semantic direction’s contribution to local meaning, while
the human meaning and attention data are slightly less interpretable (given their maximum R?
are not 1.0) but highlight that the semantic projection scores do indeed transfer to the human
behavioral rating and attention data as we would expect given their strong correlations with
DeepMeaning estimates.

Table 1.  Semantic Projection Analysis and Dominance Analysis Results

Dimension R? Dominance Analysis
Total R*  OD Int FG Ctx OD Int FG Ctx
DeepMeaning 0.555 0.372 0.360 0.349 0.332 253 251 247 249

Human Meaning 0.465 0336 0.293 0.289 0.274 262 246 245 247
Attention 0.294 0.236 0.178 0.157 0.165 283 244 23.1 24.2

Note: OD = Object Density; Int = Interaction; FG = Figure-ground, Ctx = Context.

DeepMeaning theoretical max R?, = 1.0; Human Meaning ceiling R* = 0.76; Attention ceiling
R* = 0.56.
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RESULTS

We first tested how well DeepMeaning could recover local scene meaning compared to
human raters ( ). Using the leave-one-scene-out cross-validation procedure ( ),
DeepMeaning showed excellent recovery at both the individual patch-level (indoor R., =
0.89, outdoor R, = 0.88; and 2c¢) and for scene-level maps (indoor R., = 0.87,
bootstrap 95%CI [0.85, 0.88]; outdoor R., = 0.78, bootstrap 95%CI [0.75, 0.80],

). To place DeepMeaning’s scene-level performance in context relative to human
raters, when two different groups of human raters (Hayes & Henderson, ; Henderson &
Hayes, ) rated 40 scenes (34 indoor, 6 outdoor) the scene-level correlation observed
between the two rater groups was R = 0.87 (bootstrap 95%Cl [0.85, 0.89]), which suggests
DeepMeaning is performing within or very close to the noise ceiling of human raters. Similar
to human raters, indoor scenes were more consistently rated by DeepMeaning than outdoor
scenes (tyeen(180.03) = 5.46, p < 0.001, t-distribution 95%Cl [0.06, 0.12]), which is reflective
of noisier human meaning ratings in outdoor scenes compared to indoor scenes (Henderson &
Hayes, , ).

Next we evaluated whether DeepMeaning maps were strongly associated with where peo-
ple looked in each scene ( ). Specifically, we correlated the left-out scene DeepMean-
ing map with a scene fixation density map that summarized where participants looked in that
scene ( , indoor mean R, = 0.63, bootstrap 95%Cl [0.61, 0.65]; outdoor mean R, =
0.58, bootstrap 95%CI [0.53, 0.62]) and directly compared this to the correlation observed
between human meaning maps and scene fixation density maps ( , indoor mean R =
0.61, bootstrap 95%CI [0.59, 0.63]; outdoor mean R = 0.56, bootstrap 95%Cl [0.52, 0.60]).
Overall, DeepMeaning accounted for attention as well as human meaning maps for both indoor
(6(98) = —1.14, p = 0.26, t-distribution 95%CI [-0.05, 0.01]) and outdoor scenes ({98) = —0.76,
p = 0.45, t-distribution 95%CI [-0.08, 0.04]). Moreover, there was a strong correlation (R =
0.75; Pearson correlation test, R(98) = 0.75, p < 0.001, 95%Cl [0.64, 0.82], ) of the
scene-by-scene attention correlations for DeepMeaning and human meaning, indicating that
DeepMeaning and human meaning maps also predicted attention very similarly for a given
scene. Next, we tested the generalization performance of DeepMeaning by using an ensemble
indoor and outdoor model (average linear weights and intercept across leave-one-scene-out
folds) to estimate meaning in 100 indoor and 100 outdoor scenes from a second eye movement
dataset with a smaller number of observers (CAT2000, Borji & Itti, , ). Again, we
found that DeepMeaning maps were strongly associated with attention for both indoor (1(99) =
—9459.20, p < .001, t-distribution 95%ClI [0.50, 0.54]) and outdoor scenes ({(99) = —7558.35,
p < .001, t-distribution 95%Cl [0.42, 0.47]).

Having established that DeepMeaning accurately estimates local scene meaning and that
DeepMeaning maps are strongly associated with where people look, we then tested whether
DeepMeaning could detect the removal of local semantic information by applying a diffeo-
morphic transformation (Hayes & Henderson, ; Stojanoski & Cusack, ). The diffeo-
morphic transformation ( and 4d) preserves the basic perceptual properties of the
scene region while degrading its semantic content. Previously, we have shown that human
meaning maps passed this semantic validity test, while three state-of-the-art deep saliency
models failed (Hayes & Henderson, ). Therefore, for DeepMeaning to count as an auto-
mated method for estimating local scene meaning, DeepMeaning must also be able to pass
this semantic validity test. To perform the diffeomorph test, we compared DeepMeaning’s
scene prediction for both the original scene and diffeomorphed scene using the same leave-
one-scene-out cross-validation procedure as before ( ). We then compared the mean
rating value for the critical region (original and diffeomorph) using a paired samples t-test. As
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can be seen ( and 4c), DeepMeaning showed a large decrease in estimated meaning
for the diffeomorphed region relative to the original unaltered scene region (1(39) = 22.43, p<
.001, t-distribution 95%CI [0.68, 0.81], d = 2.94). This result demonstrates that DeepMeaning,
like human raters, accurately detects decreases in local semantic content.

Semantic Interpretation

Finally, and perhaps most importantly, we evaluated whether the estimates DeepMeaning
made were interpretable. In the first analysis, we show how the text generation ability of CoCa
can be used to interpret our diffeomorph results as a simple proof-of-concept. While our sec-
ond analysis leverages the full power of a multimodal shared vision-language space to define
concrete semantic dimensions in the shared feature space (e.g., object density, interaction
potential) and how these relate to DeepMeaning and human meaning estimates in the indoor
scenes from our internal eye tracking dataset.

Given the Contrastive Captioner (CoCa) multimodal backbone of DeepMeaning, we can
decode a local scene region into a text caption, providing human-interpretable insight into
the model’s representation of a given scene region. As a proof-of-concept of this ability, we
decoded CoCa’s representation for both the original and diffeomorphed scene patches into
captions (e.g., ) to understand why the DeepMeaning rating drops in the diffeo-
morphed region relative to the original in each scene. In all 40 original scene regions, seman-
tic content was extracted (e.g., ‘a shelf with many jars of food on it’) with a caption accuracy of
92.5% (37/40), while producing semantically vacuous output for almost all (37/40) of the dif-
feomorphed image patches (e.g., ‘a circular image of some sort with different colors’), indicat-
ing the model struggled to extract any semantic content from the diffeomorphed scene regions.
A closer examination of the number of total objects that appear in each caption showed the
original captions contained 103 objects compared to 16 objects in the diffeomorphed cap-
tions. This 84.5% drop in the number of objects represented provides a clear explanation
for the large 2.94 standard deviation drop in the DeepMeaning ratings we observed when a
region was diffeomorphed: when the amount of semantic content represented plummets, so
does the DeepMeaning rating.

In addition to caption generation, we also used CoCa’s shared vision-language embedding
space to interpret DeepMeaning and human meaning ratings by quantifying the role of specific
semantic directions we defined using contrastive prompts. We tested four semantic dimensions
of local meaning using this semantic projection analysis: object density, interaction potential,
figure-ground organization, and local contextual consistency ( and ). In this
approach, for each dimension, we created simple contrastive prompts that defined a semantic
direction in the CoCa embedding space ( , d, g, ). Projecting each patch onto these
semantic directions produced semantic scores for each scene patch that we compared to Deep-
Meaning estimates, human meaning ratings, and attention ( ). The scatter plots ( ,

, h, k) visualize the relationship between DeepMeaning ratings, human meaning ratings, with
darker blue points indicating higher semantic projection scores as DeepMeaning and human
meaning ratings increase. Together these semantic dimensions explained substantial total vari-
ance in DeepMeaning estimates (R = 0.56), human meaning ratings (R = 0.47), and attention
(R* = 0.29). While the dominance analysis reveals that overall each semantic dimension
explained about a quarter of the total variance ( ). This suggests that each of these seman-
tic dimensions contribute approximately equally to local meaning.

Visual inspection of representative patches further validated our semantic projection analysis.
The object density dimension showed a clear progression: high-density patches contained many
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objects, median patches showed moderate object counts, and low-density patches featured few
objects ( ). The interaction dimension similarly ranged from highly manipulable objects
(utensils, tools) through moderately interactive elements (handrails, chairs, bookcases) to static,
non-interactive elements ( ). The figure-ground example patches demonstrated a contin-
uum from near to distant views ( ), while the context dimension ( ) ranged from
objects in typical settings to those appearing disconnected from their environment (such as a
seemingly floating bucket). Together, the caption and semantic projection analyses demonstrate
how a shared vision-language representational space can serve as a human-interpretable bridge
between vision and language, providing a powerful tool for testing cognitive theory about
semantic guidance in real-world scenes.

GENERAL DISCUSSION

Semantic representations are central to unraveling the interplay between scene understanding
and visual attention. Previous work has approached this problem by either measuring direct
human behaviors (i.e., semantic ratings of images and eye movement behavior relative to
semantic feature manipulations) or by estimating human semantic representations based on
regularities in large text corpora. Both approaches are useful, but they leave a representational
gap that makes it difficult to determine the precise mapping between visual input and semantic
knowledge, either because they are filtered through the human brain or because they are only
based on vision or language without a mapping to the other.

By bridging vision and language representations, the present study achieves two goals. First,
it offers an image-computable method for local scene meaning estimation that transfers to
visual attention. This reduces the effort required to use tools like meaning maps because
human ratings only need to be collected once and then a model can be trained that provides
good estimates. Second, and perhaps more importantly, it provides a means to interpret the
semantic representations that underlie the relationship between scene meaning and attention.
Model interpretation is a major advantage for vision-language transformers over vision-only
convolutional or transformer models that are difficult to interpret. More broadly, the current
study serves as another piece of evidence that multimodal transformers like CoCa can serve
as foundational vision-language models for downstream tasks (Yu et al., ).

We stress here that DeepMeaning is not to be taken as a global model of scene attention
(Hayes & Henderson, ). Rather, it is a tool for testing hypotheses about the role of
semantic features in attention. In this sense, DeepMeaning offers a fundamentally different
approach than global fixation models (e.g., deep saliency models like DeepGaze, Kimmerer

etal.,, ) where the primary goal is to capture the maximum amount of variance possible
in attention by training deep neural network models directly on fixation data (Henderson
et al., ). In our view, the model benchmarking approach using deep neural networks

(e.g., CNNs or transformers) is not particularly conducive to informing theories of attention
and scene understanding, because it does not tell us which specific features contribute to a
model’s success (Bowers et al., ; Hayes & Henderson, ). Importantly, unlike other
models, DeepMeaning never sees fixation data, and this is precisely why it is theoretically
interesting that it transfers to predict fixation behavior. Meaning maps test hypotheses con-
cerning the relationship between scene semantics and attention by isolating semantic fea-
tures like local recognizability/informativeness (Henderson & Hayes, ), graspability
(Rehrig et al., ), and interactability (Rehrig et al., ) to understand their unique roles,
not by out-predicting other models on a benchmark dataset. We believe DeepMeaning pro-
vides an important new image-computable method and interpretive framework for testing
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specific hypotheses about the role of semantics in scene understanding and the guidance of
attention.

Our results demonstrate how vision-language transformers can decompose local meaning
into interpretable semantic components that transfer to attention. We tested four semantic
dimensions: object density, interaction potential, figure-ground organization, and local context
consistency. These four components alone explained over half the explainable variance in
DeepMeaning’s estimates, human meaning ratings, and attention. The strong relationship
between these semantic dimensions and attention suggests that viewers’ gaze is guided by
readily identifiable object properties: how many objects are present, their affordances for inter-
action, their spatial position within the scene relative to the observer, and their contextual rela-
tionships with the immediately surrounding objects. Local meaning has been established as a
robust predictor of attention across a wide range of viewing tasks (Henderson et al., ),
including tasks where local meaning is task-irrelevant (Hayes & Henderson, ; Peacock
et al., ). The present work provides concrete insights into how semantic features shape
attention allocation during scene viewing by decomposing local meaning using a vision-
language computational framework.

Importantly, the usefulness of a vision-language transformer framework extends beyond
meaning maps to offer a general tool for investigating the role of semantics on visually guided
behaviors. For any visual task where semantics may guide attention or behavior (e.g., accu-
racy or reaction time), researchers can generate ‘semantic prompt maps’ by scoring local
image regions along theoretically-driven or hypothesis-driven semantic dimensions using con-
trastive prompts just like we have done here. For example, rather than object interactability,
one could map regions based on their task relevance or emotional valence. These semantic
prompt maps could be used to both test existing theories and to generate new hypotheses
about how specific semantic properties influence aspects of visually-guided behaviors. This
suggests that integrating across vision and language, rather than remaining siloed in a single
domain, represents a promising direction for advancing our understanding of semantics in
visual cognition.

While very promising, the semantic prompt map approach does require the user to define
contrastive prompts to target specific semantic dimensions. The effectiveness of contrastive
prompts at capturing specific semantic dimensions can vary depending on the quality of the
prompts themselves. While we did not directly validate our semantic prompts with direct
human ratings (e.g., Grand et al., ), our approach benefits from an indirect validation
through the correlations between our semantic model dimensions and human meaning rat-
ings. When applying this methodology to novel semantic dimensions without comparable
human rating data, researchers may benefit from additional validation steps to ensure the
contrastive prompts are capturing the intended semantic dimensions. This consideration
does not diminish the overall utility of the semantic prompt map approach but rather high-
lights an area for thoughtful implementation when adapting this approach to different
aspects of semantic guidance.

In summary, we used a state-of-the-art vision-language transformer trained on billions of
image-text pairs to investigate how joint representations learned from vision and language
can predict what scene regions people find meaningful and consequently where they look.
We demonstrated that this computational framework successfully recovers human meaning rat-
ings, transfers as a strong predictor of scene attention, detects local changes in semantic content
like human raters, and provides a direct route to interpreting the components of local meaning
that guide attention. The ability to offer image-computable local scene meaning estimation with
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a concrete pathway for model interpretation has tremendous potential for advancing our under-
standing of how semantic representations produce rapid scene understanding and help guide
attention, with direct implications for cognitive science, computer vision, linguistics, robotics,
and artificial intelligence.
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