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Abstract

Little is known about the development of higher-level areas of visual cortex during

infancy, and even less is known about how the development of visually guided behav-

ior is related to the different levels of the cortical processing hierarchy. As a first step

toward filling these gaps, we used representational similarity analysis (RSA) to assess

links between gaze patterns and a neural network model that captures key properties

of the ventral visual processing stream. We recorded the eye movements of 4- to 12-

month-old infants (N = 54) as they viewed photographs of scenes. For each infant, we

calculated the similarity of the gaze patterns for eachpair of photographs.Wealso ana-

lyzed the images using a convolutional neural network model in which the successive

layers correspond approximately to the sequence of areas along the ventral stream.

For each layer of the network, we calculated the similarity of the activation patterns

for each pair of photographs, which was then compared with the infant gaze data.

We found that the network layers corresponding to lower-level areas of visual cortex

accounted for gaze patterns better in younger infants than in older infants, whereas

the network layers corresponding to higher-level areas of visual cortex accounted for

gaze patterns better in older infants than in younger infants. Thus, between 4 and

12 months, gaze becomes increasingly controlled by more abstract, higher-level rep-

resentations. These results also demonstrate the feasibility of using RSA to link infant

gaze behavior to neural network models. A video abstract of this article can be viewed

at https://youtu.be/K5mF2Rw98Is
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1 INTRODUCTION

Infants rely heavily on vision to explore the environment, especially

before they are able to crawl or walk. Their visual exploration—and

access to new information about the visual world—depends on their

ability to shift their gaze from one location to another. Thus, the devel-

opment of gaze control is fundamental to infants’ learning.

A growing body of research has begun to outline how the control of

gaze develops across infancy. In general, the direction of gaze is con-

trolled primarily by low-level physical salience in young infants and

becomes progressively more controlled by higher-level visual informa-

tion and goals over the ensuing months (Colombo, 2001; Frank et al.,

2009, 2014). At the neural level, eye movements appear to be primar-

ily controlled by the superior colliculus in newborns, with an increase
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in cortical control over development (Amso & Scerif, 2015; Colombo,

2001; Johnson, 1990). However, the cerebral cortex does not develop

in amonolithic manner, and little is known about how the development

of individual cortical regions influences gaze control during infancy.

The goal of the present study is to link the development of gaze control

to the kinds of information represented in different areas of the ventral

stream.

Although much is known about the development of primary visual

cortex, relatively little is known about the development of higher-level

visual cortical areas in human infants. This is largely due to a lack of

methods formeasuring functional activity in specific brain regions that

are suitable for use in young infants. Event-related potentials (ERPs)

have beenwidely used in infants (Braddick & Atkinson, 2011), but they

do not have the spatial resolution necessary to differentiate between

closely spaced areas of cortex. Functional near infrared spectroscopy

(fNIRS) has better spatial resolution, but fNIRS has so far provided

only coarse, sensor-level informationabout thedevelopmentof higher-

level visual areas (Grossmann et al., 2008; Lloyd-Fox et al., 2009). At

this time, there are only a few studies of single-unit activity in higher-

level visual cortex in infantmacaquemonkeys (e.g., Rodmanet al., 1991,

1993) and only a few functional magnetic resonance imaging (fMRI)

studies using complex visual stimuli in awake human infants (e.g., Biagi

et al., 2015; Deen et al., 2017; Ellis et al., 2020).

In macaque monkeys, the available research indicates that the gen-

eral anatomical hierarchy of the ventral cortex is present at birth

(Batardière et al., 2002), and both low- and high-level areas of visual

cortex are responsivewithin a fewmonths after birth, with some adult-

like featural specificity (Kiorpes, 2016; Rodman et al., 1991, 1993). In

humans, the major visual areas can be functionally distinguished by

4–6 months after birth, but these areas do not yet exhibit the highly

selective responses observed in adults (Deen et al., 2017). In addi-

tion, although considerable information about features such as orien-

tation is available in lower-level cortical areas in the first few postnatal

months, this information does not appear to control behavior in human

infants. For example, behaviorally measured visual acuity in young

infants is considerably worse than would be expected from the optical

information available to the photoreceptors and fromERPmeasures of

cortical activity (Candy et al., 1998; Kiorpes, 2016; Norcia et al., 1990).

Thus, little is knownabout how the development of the various areas of

visual cortex impacts visually guided behavior once cortical control of

behavior hasbeenestablished. Thegoal of thepresent studywas there-

fore to take a first step towardunderstanding how the information rep-

resented in different areas of the ventral visual pathway predicts look-

ing behavior in infants of different ages.

We addressed this goal by using representational similarity analysis

(RSA) to link patterns of infant eye movements to a computational

model that captures important properties of the ventral stream. RSA

makes it possible to assess relationships between results obtained

fromwidely differentmethods, including behavioral measures, compu-

tational models, and neural recordings. In neuroimaging research, for

example, RSA iswidely used to link the pattern of activation across vox-

els to computational models and to behavior (Cichy et al., 2014; Groen

et al., 2018; Kriegeskorte et al., 2008; Wen et al., 2018). RSA solves a

RESEARCHHIGHLIGHTS

∙ Weused representational similarity analysis to link infant

eye movements to a neural network model that captures

key properties of the ventral pathway

∙ Lower-level layers of the network predicted the gaze pat-

terns of younger infants better than the gaze patterns of

older infants

∙ Higher-level layers of the network predicted the gaze pat-

terns of older infants better than the gaze patterns of

younger infants

∙ More generally, this study demonstrates the feasibility

of using representational similarity analysis to link infant

gaze behavior to computational models

fundamental problem that arises in comparing results across methods,

namely, that the units of measurement and the format of the empiri-

cal data are typically quite different across methods. For example, in a

study assessing the processing of visual scenes, the data from a neural

networkmodel would consist of a pattern of activation across process-

ing units for each scene, whereas fMRI data would consist of a set of

activation values across voxels for each scene, and eyemovement data

would consist of a set of {x, y} coordinates for each scene. RSA allows us

to relate these different data formats to each other by presenting the

same set of inputs to each system and examining the similarity struc-

ture of the outputs of each system.

The present study usedRSA to link infant eyemovement patterns to

a convolutional neural network (CNN) model of visual scene recogni-

tion.We obtained eye tracking data from a prior study in which infants

between 4 and 12 months viewed photographs of complex natural

scenes (Pomaranski et al., in press). For each scene, a fixation density

map was generated for each infant, representing how often the infant

fixated each location in that scene (see examples in Figure 1a). We

then computed the correlation between the fixation density maps for

each pair of scenes. Each of these correlations indicates the similar-

ity between the fixation density maps for a given pair of scenes. We

then organized the pairwise correlations from 22 scenes into a 22× 22

matrix, which is called a representational similarity matrix (RSM; see Fig-

ure 1b). A separate RSM was obtained for each infant, quantifying the

representational geometry of the gaze patterns for that infant.

We also submitted each of the 22 scenes to a CNN (based on the

AlexNet architecture; Krizhevsky et al., 2012) that was trained to clas-

sify photographs of natural scenes. Although AlexNet was originally

developed as amachine vision system and not as amodel of the human

visual system per se, its design was inspired by the known properties

of the primate ventral pathway, and the sequence of layers does a rea-

sonable job of fitting data recorded from the sequence of areas along

the ventral pathway (Cadieu et al., 2014; Güçlü & van Gerven, 2015;

Khaligh-Razavi & Kriegeskorte, 2014; Storrs et al., 2020; Wen et al.,

2018; Yamins et al., 2014). The structure of the network is shown in
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F IGURE 1 (a) Examples of three scenes used in the present study and the fixation density maps for each scene (averaged over all participants).
The r values represent the Pearson correlation between a pair of fixation density maps. Each of these r values would fill one cell of a
representational similarity matrix. Note, however, that single-participant fixation density maps were used for the analyses of the present study
rather than average fixation density maps shown here. (b, c) Simplified examples of representational similarity matrices from the fixation density
maps and from the computational model. The lower and upper triangles aremirror images, and the cells on the diagonal always have a value of one
(the correlation between the data of a scene with itself). Representational similarity is typically defined as the rank order correlation between a
pair of representational similarity matrices (limited to the lower triangles of thematrices, highlighted in yellow).

Figure 2, and amore detailed explanation is provided in the online sup-

plementarymaterials. Passing a scene through the network produces a

pattern of activation across the units in each layer. We computed the

correlation between the activation patterns for each pair of scenes,

separately for each spatially organized layer, yielding a separate RSM

for each layer (see Figure 1c). These RSMs reflect the representational

geometry of the individual layers.

To determine how the representational geometry of each layer was

related to the representational geometry of the infant gaze control

system—and how this relation changes over development—we com-

puted the correlation between the eye movement RSM for each infant

(as in Figure 1b) and the neural network RSM for each layer (as in Fig-

ure 1c). This approach allowed us to test the hypothesis that the rep-

resentations that control shifts of gaze become more abstract over

development in a manner that parallels the increasing abstraction that

occurs as information flows through the ventral stream in adults. This

general hypothesis leads to two specific predictions: (1) the pattern of

activation in the lower layers of the network (which are analogous to

lower-level areas of visual cortex) will account for the gaze patterns

of younger infants better than the gaze patterns of older infants; and

(2) the pattern of activation in the higher layers of the network (which

are analogous to higher-level areas of visual cortex)will account for the

gaze patterns of older infants better than the gaze patterns of younger

infants.

If observed, these predicted patterns would confirm our general

hypothesis that, over development, gaze control becomes governed
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F IGURE 2 (a) General architecture of AlexNet. The input is a bitmapwith three layers (red, green, and blue). Information flows forward
through each successive layer, and the pattern of activation over the units in the final layers is used to guess the class of the input scene. (b)
Detailed look at the flow of information between layers. Note that the output of each unit (except for themax pooling layers) is passed through a
rectified linear unit, which zeros the value if it is negative.

by progressively more abstract representations like those found in

higher-level areas of visual cortex. Such a pattern of results would also

corroborate prior research showing that eye movement control shifts

from being dominated by low-level physical stimulus features early in

infancy to being dominated by higher-level information in older infants

(Colombo, 2001; Frank et al., 2009, 2014). An alternative possibility is

that younger infants would simply have less consistent gaze patterns

than older infants, leading older infants to exhibit stronger representa-

tional similarity than younger infants for all layers of AlexNet.

It should be noted that each layer of AlexNet (except for the fully

connected layers) contains three dimensions, including X and Y spa-

tial dimensions and a Z dimension that represents the different fea-

tures coded at each location of the layer. By contrast, the infant eye

movement data are 2-dimensional, with X and Y spatial dimensions.

RSA transforms both the 3-dimensional network representations and

the 2-dimentional fixationmaps into the common space of representa-

tional similarity matrices, making it possible to link them despite their

different dimensionality. In addition, the mapping between the repre-

sentation of space in the network (or in the brain) and the space of the

eye movements may not be linear, and RSA avoids the need to assume

a specific mapping function between the coordinate systems.

This study also served as a proof of principle for using RSA to link

patterns of infant eyemovementswith computationalmodels. RSA can

be used for virtually any type of behavioral, neural, or model data as

long as separate responses have been obtained for a reasonably large

set of inputs (like the 22 images used in the present study). This flexibil-

itymeans that RSA could be used to address a broad range of questions

about the development of perception and cognition during infancy.

2 METHODS

The data were obtained from a study that was designed for a differ-

ent purpose (Pomaranski et al., in press). The specific data and analysis

code used in the present study are available at https://osf.io/ehg82/.

2.1 Participants

The final sample included 54 healthy, typically developing infants (27

boys) ranging in age from 114 to 373 days. All infants were born full

term, and we excluded individuals who were at significant risk for

https://osf.io/ehg82/
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colorblindness (e.g., boys with a maternal grandfather who was col-

orblind). An additional 48 infants were tested but excluded from the

analyses due to fussiness or lack of interest on the part of the infant,

parental interference, calibration or tracking failure, or experimenter

error. The exclusion criteria were established in Pomaranski et al., (in

press). All infantswere providedwith a toy or t-shirt and a certificate in

appreciation of their time.

The sample of infants reflected the demographics of the local com-

munity (57% were Caucasian, 22% were mixed race, and the others

were African American, other, or no race reported), and the mothers

were well educated (52% had earned at least a bachelor’s degree).

We conducted correlations of these variables with age to deter-

mine whether there were any differences in demographic charac-

teristics across ages. We found that infant gender (t(54) = 0.996,

p = 0.324), race (F(7,54) = 0.516, p = 0.818) and parental education

level (rho(52)= -0.032, p= 0.821) did not significantly vary with age.

2.2 Stimuli

The primary stimuli were 24 images taken from the MIT Saliency

Benchmark (Judd et al., 2012). Examples are shown in Figure 1a. In

addition, infants were periodically shown 10-s video clips frompopular

children’s television shows (e.g., Sesame Street, Baby Einstein) to main-

tain their interest.

2.3 Apparatus

Infants’ eye movements were recorded at 120 Hz using an SMI-RED

N eye tracker. The eye tracker was attached to the bottom of an LCD

monitor that had a camera attached to the top to record the partici-

pants’ head and body position. The stimulus images completely filled

the monitor (approximately 48 cm wide, 30 cm high, 1680 × 1050 res-

olution).

2.4 Procedure

The protocol was reviewed and approved by the local Institutional

Review Board, and parents gave informed consent. Infants sat on their

parent’s lap or in a highchair (with parent nearby), positioned so their

eyes were approximately 60 cm from the monitor. At this viewing dis-

tance, the images were approximately 46 × 28 degrees of visual angle.

We instructed parents to interact with their infant as little as possible,

to remain quiet, and not to direct their infant’s attention to the screen.

The session began with an automatic 5-point calibration procedure,

followed by a validation. The calibration procedure was repeated until

the infant’s estimated gaze position was within approximately 2◦ of

the validation locations. After calibration, parentswere fittedwith felt-

covered sunglasses tominimize bias.

Each experimental trial began with a flashing fixation crosshair pre-

sented at the center of the screen, accompanied by an attention-

grabbing sound (i.e., bells, rattle). Once fixation remained within

approximately 5◦ of the fixation crosshair for 200 ms, the fixation

crosshair was replacedwith a 5-s presentation of one of the 24 images,

pairedwith classicalmusic. Trialswere presented in blocks of four, each

of whichwas followed by a short video clip tomaintain infants’ interest

and to reduce fussiness. Each itemwas presented in only one block; the

images were presented in random order within a block. An example of

a trial block, with an infant’s eye gaze superimposed, can be found at

https://osf.io/ehg82/.

Each included infant provided data from at least 18 images

(range= 18–22) of the 24maximum images. Given variation in infants’

interest across the session, not every infant saw every image. Follow-

ing the prior study (Pomaranski et al., in press), we selected the images

that were viewed by at least 12 infants, resulting in a final selection

of 22 images for analysis. Each of these scenes was viewed by a siz-

able proportion of the sample (range= 51–54 infants, mean= 52.737,

SD= 1.032). The entire set of 22 images is provided in Figure S1.

2.5 Data processing

The eye tracker data were filtered into fixations using the SMI BeGaze

analysis software with standard parameters for low-speed (< 200 Hz)

eye-tracking. Fixations were defined as any period of gaze that was at

least 80 ms in duration, with maximum dispersion of 100 pixels. The X

andY coordinates of each fixation to each imagewere then used to cre-

ate fixation density maps, or matrices representing the number of fixa-

tions centered at each pixel location of the 1680× 1050 image. A sepa-

rate fixation density mapwas created for each image that a participant

viewed. To account for eye tracking error and variability within a fixa-

tion period, the 1680 × 1050 pixel maps were filtered with a Gaussian

kernel (full width at half maximum = 150 pixels). The maps were then

normalized usingMATLAB’smat2gray.m function so that all cells in the

matrix contained values ranging from0 (the least fixated pixel) to 1 (the

most fixated pixel).

2.6 AlexNet

We used a CNN based on the AlexNet architecture (Krizhevsky et al.,

2012), pre-trained on the Places365 database (Zhou et al., 2018), and

implemented in Caffe (Jia et al., 2014). As illustrated in Figure 2, this

CNN has five convolutional layers, intermixed with three max pool-

ing layers and followed by three fully connected layers. All convolu-

tional layers perform a linear convolution on their inputs. A rectified

linear unit (ReLU) function is applied after all convolutional and fully

connected layers, which sets negative values to zero. We selected this

particular CNN because it is optimized for scene classification and has

been repeatedly demonstrated to correspond well with the response

properties of the primate ventral stream (Cadieu et al., 2014; Groen

et al., 2018 ; Lindsay, 2020). Because the fixation density maps were

entirely spatial in nature, our analyses focused on the spatially orga-

nized layers of AlexNet (the convolutional andmax pooling layers). We

https://osf.io/ehg82/
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did not analyze data from the fully connected layers because they have

no spatial organization.

2.7 Representational similarity analysis (RSA)

Representational similarity was calculated in a three-stage process.

First, representational similaritymatrices (RSMs)were computed from

the infant fixation maps for each image, separately for each partici-

pant (as in Figure 1b). Second, RSMs were computed from the pattern

of activation in AlexNet for each image (as in Figure 1c), separately

for each convolutional layer (after the ReLU non-linearity, in line with

the approach typically utilized in prior work linking neural networks to

brain activity; Storrs et al., 2020) and max pooling layer. Finally, rep-

resentational similarity was quantified as the rank order correlation

between a given infant’s RSM and the AlexNet RSM for a given layer.

This gave us eight representational similarity estimates for each infant

(one for each AlexNet layer). A linear mixed effects model was then

used to assess the effects of infant age and AlexNet layer on represen-

tational similarity.

For each infant, we computed the fixation map RSM from that

infant’s fixation density maps (one 1680 × 1050 map for each scene).

Each fixation density map was reorganized into a single vector of

1,764,000 values, and the similarity between a given pair of maps was

quantified as thePearson r correlation between the vectors for the two

maps. This produced an RSM for each infant, in which each cell con-

tained a correlation between the fixation density maps for a pair of

scenes (as in Figure 1b).

We computed the AlexNet RSMs from the pattern of activation

across all units of a given layer for each of the 22 images. For each layer,

theactivationpattern for each imagewas converted intoa single vector

of activation values, and the Pearson r correlation between each pair of

vectors was computed. This yielded eight separate 22 × 22 RSMs (one

for each of the eight convolutional and max pooling layers), in which

each cell contained a correlation between the pattern of activation for

a pair of scenes for that layer of AlexNet. RSMs were calculated sepa-

rately for each infant, and the single-infant RSMs are shown in Figure

S2.

Representational similarity was quantified as the Spearman rho

rank-order correlation between an individual infant’s fixation RSMand

the AlexNet RSM for a given layer. We had 54 infants and 8 AlexNet

layers, so this yielded 54 × 8 representational similarity values.1 Note

that parametric (Pearson r) correlations were appropriate when com-

puting the individual RSMs, because the same data types (e.g., fixation

density maps) were being correlated with each other at that stage of

the analysis. However, rank order correlations were appropriate when

1 Note that not all infants saw all 22 scenes. For an infant who saw N scenes, the RSM was

an N × Nmatrix of the correlations between the fixation density maps for those scenes. Simi-

larly, we extracted the correspondingmodel correlations to create anN×NRSM for each layer

of AlexNet for use with that infant. Representational similarity was then computed using the

N ×NAlexNet and fixation RSMs for the scenes viewed by a given infant. Because representa-

tional similarity was computed separately for each infant, this did not create any difficulties in

the analysis.

quantifying the association betweenRSMs, becausewe cannot assume

that the RSM for one data type (e.g., fixation density values) will be

linearly related to the RSM for a different data type (e.g., AlexNet

activations).

The correlation between the fixation map RSMs and the AlexNet

RSMs is limited by the reliability of the fixation map data. To account

for this, we estimated the noise ceiling, which represents the highest

Spearman rho that a perfectmodel would be expected to achieve given

the noise in the fixationmaps (Nili et al., 2014). The upper bound of the

noise ceiling was computed by taking the correlation between a given

infant’s fixationmapRSMand the fixationmapRSMof all subjects com-

bined and then averaging the resulting rho values across participants.

The lower bound was computed in the same way, except that a given

infant’s RSM was correlated with the average RSM from all the other

infants.

2.8 Statistical analyses

The statistical analyses were carried out in SAS 9.3 with PROCMIXED

using custom effect size macros (Tippey & Longnecker, 2016). The rep-

resentational similarity (Spearman rho) values served as the dependent

variables in a fully-crossed randommixed effectsmodelwith infant age

in days and AlexNet layer as fixed effects, with a random intercept for

subjects. Agewas entered into themodel as a continuous variable (cen-

tered at the age of the youngest infant, 118 days). AlexNet layer was

entered as a class effect rather than as a continuous variable. A Holm-

Bonferroni correction was applied to adjust for multiple comparisons

when each layer of AlexNet was analyzed separately, using a family-

wise Type I error rate of 0.05. To assess the robustness of the estimated

parameters and confidence intervals to violations of parametric model

assumptions, the analyseswere repeated using a non-parametric boot-

strapping approach with 10,000 iterations (Appiah, 2018). All effects

that were significant in the parametric analyses were significant in

these non-parametric tests, so we report only the parametric results

here. The results of the non-parametric tests can be found in the online

supplementarymaterials.

3 RESULTS

3.1 Basic properties of the eye movements

A detailed description of the basic eye movement parameters is pro-

vided by Pomaranski et al. (in press). To summarize, there were no

age-related differences in the quality of data, in the number or dura-

tion of fixations, in the saccade length, or in center bias tendencies.

However, the between-infant consistency of the eye movement pat-

terns increased with age. That is, the fixation density maps were more

idiosyncratic in the younger infants than in the older infants, and the

fixation density maps were both more consistent across infants and

more adultlike in the older infants (see Pomaranski et al., in press, for

details).
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F IGURE 3 Representational similarity (in Spearman
rho rank-order correlation units) between each layer of
three differently trained AlexNets and the gaze patterns
of infants of different age ranges. A separate rho value
was calculated for each combination of participant and
layer, and then the rho values were averaged across the
infants within a given age range for visualization
purposes. These age groups were not used in the
statistical analyses, in which agewas a continuous
variable. Separate values are provided for versions of
AlexNet that were (a) trained to classify scenes, (b)
trained to classify objects, and (c) untrained, with random
weights. The noise ceiling (i.e., the highest rho values that
could be expected given the noise level in the gaze data)
was 0.33–0.38. *= Significant effect of age (p< 0.05) for
that layer. Error bars denote+/- 1 standard error. All bars
save for those in Convolutional Layer 1 in the
objects-trained network are significantly different from
zero (all adjusted p’s< 0.05).

3.2 Primary representational similarity effects

For purposes of visualization, Figure 3a shows the raw representa-

tional similarity between each AlexNet layer and the fixation data,

averaged over the infants in each of three equal-sized age groups

(terciles: 118–193 days, 195–277 days, and 282–373 days). Note that

these arbitrary age ranges were used only for visualization, and age

was treated as a continuous variable in all statistical analyses. The fig-

ure shows that the mean representational similarity (Spearman rho)

values, averaged across infants within an age range, were well above

zero for each layer in each age range. These means were between 0.04

and 0.16, which is within the range of representational similarity val-

ues observed in many previous ERP and fMRI studies (e.g., Greene &

Hansen, 2018;Güçlü& vanGerven, 2015; Khaligh-Razavi &Kriegesko-

rte, 2014; Storrs et al., 2020). Moreover, these values are reasonable

given the noise ceiling, which is the highest representational similarity
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value thatwould be expected given the noise in the fixation data (lower

bound= 0.33, upper bound= 0.38).

The statistical analysis showed that the predicted representational

similarity level was significantly greater than zero (chance) in each

layer for infants at the average age of our sample (241 days; all

ps < 0.05 after applying the Holm-Bonferroni correction for multi-

ple comparisons). Thus, each layer of the network could predict the

gaze patterns better than chance for the average-aged infant. The

average representational similarity across all layers was rho = 0.093

(SD= 0.08).

The statistical analysis indicated that the representational similarity

pattern varied significantly with age. In general, representational sim-

ilarity for the lower layers of the scene-trained network was greater

for the younger infants than for the older infants, and representational

similarity for the higher layers was greater for the older infants than

for the younger infants. The mixed effects model yielded no significant

main effect of age, F(1, 52) = 0.09, p = 0.767, ω2
< 0.001, consistent

with the approximately equal levels of overall representational similar-

ity across ages shown in Figure 3a. However, the analysis yielded a sig-

nificant main effect of layer, F(7, 364)= 19.07, p < 0.0001, ω2
= 0.240,

indicating that in general the RSMs for some AlexNet layers predicted

the fixationRSMsbetter than others.Most importantly, the interaction

between age and layer was statistically significant, F(7, 364) = 10.83,

p< 0.0001,ω2
= 0.131, consistent with the observation of greater rep-

resentational similarity for younger infants than for older infants in the

lower layers and greater representational similarity for older infants

than for younger infants in the higher layers.

Follow-up analyses examined the age effect separately for each

layer, with the p values adjusted using the Holm-Bonferroni correc-

tion for multiple comparisons. Three layers showed a significant effect

of age, and Figure 4 shows scatterplots of the correlations for these

layers. In Convolutional Layer 2, representational similarity declined

significantly as age increased, t(364) = −3.01, padjusted = 0.020. Con-

versely, in Convolutional Layer 5 and Max Pooling layer 3, representa-

tional similarity increased significantly as age increased, t(364)= 3.67,

padjusted = 0.002 and t(364)= 2.92, padjusted = 0.022 respectively.

These results indicate that the lower layers of AlexNet (correspond-

ing to lower visual cortical areas) accounted for the patterns of look-

ing better in younger infants than in older infants, whereas the higher

layers of AlexNet (corresponding to higher visual cortical areas) pre-

dicted the looking patterns better in older infants than in younger

infants.

To confirm that our primary results did not reflect an undue influ-

ence of outliers, we conducted a formal outlier analysis in which the

overall influence of individual cases on the log-likelihood distance of

the model was assessed (Schabenberger, 2004). We identified one

potential outlier case (the case with the lowest value on the Y axis for

the middle panel of Figure 4). Upon exclusion of this case, the effect

at Pooling Layer 3 was no longer statistically significant after correc-

tion formultiple comparisons (padjusted = 0.110), but therewere no sub-

stantive changes in any of the other effects. In particular, the inter-

action between layer and age remained significant, F(7,357 = 8.25,

p< 0.0001,ω2
= 0.101).

F IGURE 4 Scatterplots of representational similarity (Spearman
rho) as a function of age. Each dot indicates the representational
similarity between a single infant’s gaze pattern and a specific layer of
the scenes-trained AlexNet. Only the layers with statistically
significant age effects are shown.

3.3 Effects of network architecture

It is natural to assume that the representational similaritywe observed

between the infant gaze data and AlexNet depends on the specific fea-

tures that AlexNet uses to represent the scenes. That is, when AlexNet

is trained to classify scenes, it developsGabor-like receptive field prop-

erties in lower layers and develops more complex shape-like represen-

tations in higher layers. However, the representational similarity we

observed could also be a result of the overall architecture of AlexNet

rather than the specific features that are learned during training. This

overall architecture—including the hierarchical structure, the increas-

ing receptive field sizes at higher layers, and the use of max pooling
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F IGURE 5 Representational similarity
after collapsing across the feature channels
(using the original scene-trained network
trained on scenes). A separate rho value was
calculated for each combination of participant
and layer, and then the rho values were
averaged across the infants within a given age
range for visualization purposes. These age
groups were not used in the statistical
analyses, in which agewas a continuous
variable. The noise ceiling was 0.33–0.38.
*= Significant effect of age (p< 0.05) for that
layer. Error bars denote+/- 1 standard error.
All individual bars are significantly different
from zero (all adjusted p’s< 0.05)

layers—was defined prior to training and remained constant. Although

this architecture is not the result of training, it nevertheless captures

some important attributes of the ventral pathway that may be impor-

tant for visually guided behavior (Rosenfeld & Tsotsos, 2019). Indeed,

prior investigations have shown that, in some situations, untrained net-

works can outperform trained networkswith regard to predicting neu-

ral representations (Truzzi & Cusack, 2020).

To assess the role of this overall architecture, we asked whether

we would obtain similar RSA results with an untrained version of

AlexNet (for a similar approach, see Cichy et al., 2016; Herzog et al.,

2020). Specifically, we passed the 22 images through an untrained

version of AlexNet with random weights (Glorot initializer with a

uniform distribution, bounds = +/-

√
6

No+Ni
, where No= layer filter

size × number of features, Ni = layer filter size × number of input

channels). We then computed RSMs for the pattern of activation in

each layer. As illustrated in Figure 3b, this random-weight version

of AlexNet produced above-zero representational similarity with the

infant fixation data, with significantly above-chance values for each

layer at the average age (all p-values< 0.05 after adjusting for multiple

comparisons). This indicates that the overall architecture of AlexNet,

independent of any training, has some ability to predict infant gaze

patterns.

However, the strength of the relationship between the untrained

network activations and fixation behavior did not vary with infant age

overall, F(1, 52) = 0.16, p = 0.694, ω2
< 0.001, or within any indi-

vidual layer for infants at the average age (all adjusted p’s > 0.99).

Moreover, a direct comparison of the results for the trained net-

work (Figure 3a) and the untrained network (Figure 3b) for each layer

revealed that the effect of age differed significantly for Pooling Layer

1 (padjusted = 0.034), Pooling Layer 2 (padjusted = 0.020), Convolutional

Layer 4 (padjusted = 0.045), Convolutional Layer 5 (padjusted < 0.001)

and Pooling Layer 3 (padjusted = 0.022). These results indicate that

the developmental pattern shown in Figure 3a was a result of the

visual features that the network learned from the training procedure,

and not a function of the training-independent architecture of the

network.

3.4 Effects of features

The fact that the untrained network yielded much lower representa-

tional similarity than the trainednetwork suggests that the specific fea-

tures learned by the network during training are important in explain-

ing the gaze patterns. There are two ways that these features might

have an impact. First, similarity in the specific features contained by

two scenes might play an important role. For example, the similarity of

the looking patterns for two scenesmay depend onwhether the scenes

contain the same colors and shapes. An alternative possibility is that

the similarity between scenes per se is not important, but the network

must code the kinds of features that the visual system actually repre-

sents. That is, as long as the network represents the right kinds of fea-

tures, the similarity in features between pairs of scenes may play little

or no role, and the key factor may be the similarity across scenes in the

locations that contain substantial visual information. For example, two

scenes might elicit similar looking patterns if they both have an object

in the upper left corner, even if this object is red and rectangular in one

scene and blue and oval in the other.

To distinguish between these alternatives, we averaged the activa-

tion values across features at each location of a given layer, creating a

2D spatial map of averaged activations instead of a 3D map that rep-

resents the individual feature values at each location. This 2D map no

longer indicates which specific features were present at a given loca-

tion, but the values at each location indirectly reflect the features that

can be detected by the layer. We used these 2Dmaps to computer the

RSMs for each layer.

The results are shown in Figure 5. As in the original analysis, the

main effect of age was not significant, F(1, 52) = 0.01, p = 0.904,

ω2
< 0.001, indicating that the overall levels of representational simi-

larity were similar across ages. However, the main effect of layer (F(7,

364) = 22.03, p < 0.0001, ω2
= 0.448) and the interaction between

layer and age (F(7, 364) = 11.01 p < 0.0001, ω2
= 0.213) were signifi-

cant for this network, indicating that the magnitude of the representa-

tional link was stronger in some layers relative to others and that the

pattern varied as a function of age. This is the same qualitative pattern
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of effects that was observed in the original analyses (Figure 3a). When

the effect of age was analyzed separately for each layer, we found

only one layer with a significant effect of age: representational simi-

larity declined significantly with age in Pooling Layer 1, t(364)=−2.86,

padjusted =0.036. This contrastswith the original analyses, inwhich rep-

resentational similarity also increased significantly with age in Convo-

lutional Layer 5 and Pooling Layer 3.

We also conducted a direct comparison of this feature-collapsed

network and the untrained network, including network type as a pre-

dictor variable in the statistical model. This analysis revealed that

the two networks differed significantly with regard to the relation-

ship between age and layer (network type × age × layer interaction:

F(7,780) = 9.81, p < 0.0001, ω2
= 0.122). Follow-up analyses showed

that the age effect was significantly greater for the feature-collapsed

network than for the untrained network in Convolutional Layer 5

(t(780) = 2.83, padjusted = 0.038), and marginally significantly greater

in Pooling Layer 1 (t(780)= 2.59, padjusted = 0.069).

We also conducted a direct comparison of the feature-collapsed

(2D) network and the original (3D) network. This analysis revealed that

the two networks did not differ significantly with regard to either the

overall degree of representational similarity, F(1,53)= 0.30, p= 0.585,

ω2
< 0.001, or the relationship between age and layer activation lev-

els overall, F(7,780)= 1.42, p= 0.196,ω2
= 0.003, as well as within any

individual layer (all adjusted p’s> 0.99).

The finding that representational similarity wasmuch higher for the

collapsed-feature network than for the random network indicates that

training of the network is important to ensure that the network is sen-

sitive to the same kinds of features that humans detect. However, the

finding that the results were similar for the collapsed-feature network

and the original 3D network suggests that gaze is primarily controlled

by where features are present more than what features are present, as

long as a given layer is sensitive to the appropriate features. Thus, fea-

ture similarity across scenes at a given location does not appear to have

a strong effect.

3.5 Effects of training set

Although the results obtained with randomweights and collapsed fea-

tures indicate that training is important, they do not indicate whether

the specific training set is important. The version of AlexNet used

for the primary analyses was trained to classify complex scenes that

each contained many individual objects (e.g., schools, parking lots, gro-

cery stores), similar to the scenes viewed by the infants in this study.

However, most research linking AlexNet with visual cortex has used

networks that were trained to classify close-up pictures of individ-

ual objects (e.g., paper clips, brooms, grasshoppers). We therefore

repeated our analyses with a version of AlexNet that was trained to

classify objects of this nature, using the 1.2 million images from the

ILSVRC2015 ImageNet database.

Prior evidence suggests that both scene-trained and object-trained

networks have reasonable representational links to scene-related

responses in early visual cortex (Blauch et al., 2019; Chang et al., 2019).

Consequently, we expected to find the same effects in the lower lay-

ers for the object-trained network that we observed in the scene-

trained network. However, object- and scene-trained networks appear

to diverge with regard to higher-level ventral stream regions, with sig-

nificantly weaker representational links for object-trained networks

relative to scene-trained networks (Blauch et al., 2019). Thus, the pos-

itive age-related correlations we observed in the upper layers of the

scene-trained network would not be expected for the object-trained

network.

As shown in Figure 3c, this is exactly what we found. That is, we

observed relatively equal levels of overall representational similarity

across ages for the object-trained network, as was observed for the

scene trained network. Consequently, the main effect of age on repre-

sentational similaritywas not significant in the object-trained network,

F(1, 52)=0.38, p=0.541,ω2
<0.001.However, themain effect of layer

(F(7, 364)=12.49, p<0.0001,ω2
=0.148) and the interaction between

layer and age (F(7, 364)= 3.63 p= 0.0009,ω2
= 0.034)were significant

for the object-trained network, indicating that the magnitude of the

representational linkwas stronger in some layers relative to others and

that this varied as a function of age. In particular, as shown in Figure 3c,

Convolutional Layer 2 showed marginally significantly greater repre-

sentational similarity to younger than to older infants (t(364) = 2.60,

padjusted = 0.078), similar to Pooling Layer 1 in the scene-trained net-

work (Figure 3a). However, whereas this age effect was reversed at

the higher layers of the scene-trainednetwork, therewas no significant

effect of age for any of the other layers of the object-trained network.

To directly assess the effects of training the network on objects

versus scenes, we performed statistical contrasts of the age effects

in the scene-trained and object-trained networks for each layer. The

effect of age in the scenes-trained networkwas significantlymore neg-

ative (i.e., a stronger representation link in younger infants) in Pool-

ing Layer 1 (t(780) = −3.00, padjusted = 0.017) and more positive (i.e., a

stronger representational link in older infants) inConvolutional Layer 4

(t(780)= 3.09, padjusted = 0.014), Convolutional Layer 5 (t(3.98)= 3.98,

padjusted < 0.001), and Pooling layer 3 (t(780)= 2.70, padjusted = 0.036).

These results indicate that the specific training experience of the net-

work plays a role in the developmental pattern shown in Figure 3a,

especially for the higher layers.

4 DISCUSSION

Very little is known about how the development of gaze control in

infancy is related to the types of representations found in different

areas of the ventral stream. The goal of this studywas to provide a first

step toward filling this gap by asking how the pattern of activation in

different layers of AlexNet predicts looking behavior in infants of dif-

ferent ages. We tested the hypothesis that gaze control relies on pro-

gressively more abstract representations over development, parallel-

ing the increasing abstraction that occurs as information flows through

the ventral stream in adults.

We obtained two key results (see Figure 3a). First, the pattern of

activation in the lower layers of the network (which are analogous to
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lower-level areas of visual cortex) exhibited greater representational

similarity to the fixation density maps of younger relative to older

infants. Second, the pattern of activation in the higher layers of the net-

work (which are analogous to higher-level areas of visual cortex) exhib-

ited greater representational similarity to the fixation density maps

of older relative to younger infants. This is exactly the pattern that

would be expected if gaze control relies on progressivelymore abstract

representations as infants develop. This pattern cannotbeexplainedby

noisier or less consistent gaze patterns in the younger infants, which

would have led to weaker representational similarity for younger than

for older infants in all layers of AlexNet.

We also found that collapsing across the feature dimension pro-

duced a reduction in age-related differences in the upper layers of

the network but had little to no effect on age-related differences in

the lower layers. Training the network on different image classifica-

tion tasks also impacted age-related differences in the upper but not

the lower layers of the networks. These results indicate that what fea-

tures are present at a given location in the higher layers impacts the

pattern of looking in an age-dependent manner, whereas for the lower

layers the key factor is where the features are located and not what

the features are. However, the features do play some role even in the

lower layers, because a completely untrained network hadmuch lower

representational similarity to the gaze patterns in all layers relative to

the trained network. This presumably indicates that the network must

learn what kinds of features are easily detectable by each region of the

visual system.

Finally, it is interesting to note that the middle layers of the net-

work exhibit neither greater nor weaker representational similarity as

a function of age. Some evidence (Güçlü & van Gerven, 2015; Long

et al., 2018) suggests that these layers represent mid-level texture and

form information, which may be equally well-represented across the

age ranges in our sample.

The present findings are consistent with prior research suggest-

ing a shift over development from gaze being controlled by low-level

physical features of the stimulus to gaze being controlled by higher

level features. For example, several studies have shown that 3- to 4-

month-old infants look first at physically salient regions of visual stim-

uli, and infants 6 months and older look first at regions of social sig-

nificance, such as the location of a human face (Frank et al., 2009,

2014; Gliga et al., 2009; Kwon et al., 2016). In addition, when infants

view photographs of naturalistic scenes, the proportion of systematic

looking attributable to physical salience decreases over the first year

(Pomaranski et al., in press).

Note, however, that this shift from salience-based control to higher-

level sources of information in prior research is not identical to

the shift observed in the present study. First, salience per se is not

directly coded by the lower layers of AlexNet. Second, prior work

with infants has focused mainly on faces as the higher-level stim-

uli (Frank et al., 2009, 2014; Kelly et al., 2019; Kwon et al., 2016),

whereas the higher layers of AlexNet represent a broad range of

abstract features (Wen et al., 2018). Thus, although the present find-

ings are broadly consistent with prior work, they also provide a signif-

icant step forward by linking the development of gaze control to the

types of features represented across the sequence of ventral stream

areas.

The present findings are only a first step toward understanding

how specific areas of the ventral stream contribute to gaze control in

infants, and there are some important limits to the conclusions that can

be drawn. First, our conclusions are based on a network that is broadly

similar to the ventral stream rather than actual data from the ventral

stream. Moreover, although this network captures key properties of

the ventral stream in adults (Cadieu et al., 2014; Güçlü & van Gerven,

2015; Khaligh-Razavi & Kriegeskorte, 2014; Storrs et al., 2020; Yamins

et al., 2014), it is not known how well it matches the response proper-

ties of the ventral stream in infants. In addition, because AlexNet was

trained in a supervisedmannerwith labeled images, it is amodel of rep-

resentations in themature visual system, not amodel of how those rep-

resentations develop. Thus, we can conclude that changes in gaze pat-

terns over development can be predicted byprogressivelymore abstract

representations that are similar to the changes in representations that

occur between lower- and higher-level areas of the adult visual stream;

however, we cannot conclude that the present results reflect develop-

mental changes in the ventral stream itself.

A second limitation is that gaze control depends on the dorsal

stream and subcortical regions as well as the ventral stream, but

AlexNet lacks these other regions. Thus, although we found that the

specific features that are learned by this model of the ventral stream

can predict age-related changes in gaze patterns, we were unable to

assess the role of other brain regions. There is no doubt that these

other brain regions develop across the first year, and that there are

changes in the role they play in gaze control (Johnson, 1997). A more

complete understanding of the control of gaze in infancy will there-

fore require models that include structures such as the posterior pari-

etal cortex, the frontal eye fields, and the superior colliculus. Fur-

thermore, it will be important for future work using this approach to

investigate whether some features (e.g., faces, bodies) play a special

role, as has been observed using more traditional methods (e.g., Kwon

et al., 2016).

A third limitation is that RSA is inherently correlational, so the

observed effects may not reflect a direct causal role of the differ-

ent representational geometries captured by the different layers of

AlexNet. Future research could address this limitation by construct-

ing artificial stimuli that reflect the representations in specific layers

of AlexNet (as in Bashivan et al., 2019). These synthetic stimuli could

then be experimentally manipulated to see if stimuli corresponding to

different layers produce different gaze patterns.

Despite these limitations, the present study makes two significant

contributions to the literature. First, it provides new evidence that

infants’ gaze control becomes increasingly influenced by higher level

visual cortical areas between 4 and 12 months. Second, it provides a

proof of principle for using RSA to link the development of looking

behavior in infancy to computational models of the visual system.

This approach could easily be extended to other computational

models or other types of infant behavioral data. As highlighted byWen

et al. (2018), such an approach is particularly promising with regard

to hypotheses regarding differences in hierarchical visual processing
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when direct neural measures are difficult to obtain, as in developmen-

tal populations. The main requirement is that data must be available

for a reasonably large number of distinct inputs (such as the 22 images

used in the present study). RSA can also be used to link behavioral data

with neural data. For example, RSA could be used to askwhether infant

gaze patterns can be predicted by ERP, fNIRS, or fMRI data collected

from infants or fromadults.Moreover, RSA is straightforward to imple-

ment, and our analysis code is available at https://osf.io/ehg82/. Thus,

RSA is a useful new analytic tool that can be used to address previously

intractable questions about infant development.
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