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How do spatial constraints and meaningful scene
regions interact to control overt attention during visual
search for objects in real-world scenes? To answer this
question, we combined novel surface maps of the likely
locations of target objects with maps of the spatial
distribution of scene semantic content. The surface
maps captured likely target surfaces as continuous
probabilities. Meaning was represented by meaning
maps highlighting the distribution of semantic content in
local scene regions. Attention was indexed by eye
movements during the search for target objects that
varied in the likelihood they would appear on specific
surfaces. The interaction between surface maps and
meaning maps was analyzed to test whether fixations
were directed to meaningful scene regions on
target-related surfaces. Overall, meaningful scene
regions were more likely to be fixated if they appeared
on target-related surfaces than if they appeared on
target-unrelated surfaces. These findings suggest that
the visual system prioritizes meaningful scene regions
on target-related surfaces during visual search in scenes.

Introduction

Owing to processing limitations, the visual system
must select and prioritize only the most relevant visual
information frommoment to moment during real-world
visual search. This selection process is accomplished
via eye movements. However, it is unclear why some

aspects of the world are prioritized over others for
analysis. Previous work has found influences of target
features (Malcolm & Henderson, 2009; Navalpakkam
& Itti, 2005; Vickery et al., 2005; Wolfe & Horowitz,
2017; Zelinsky, 2008), scene context/spatial constraint
(Castelhano & Witherspoon, 2016; Neider & Zelinsky,
2006; Pereira & Castelhano, 2014, 2019), memory
(Draschkow et al., 2014; Võ & Wolfe, 2013), and
interactions among these sources (Bahle et al., 2018;
Bahle & Hollingworth, 2019; Castelhano & Heaven,
2010; Ehinger et al., 2009; Malcolm &Henderson, 2010;
Torralba et al., 2006; Wolfe & Horowitz, 2017; Zelinsky
et al., 2006; Zelinsky et al., 2020). Recent work (Hayes
& Henderson, 2019) suggests that the visual system
may also prioritize local scene regions that are high in
meaning during visual search, but it is unknown how
local, context-free meaning (i.e., meaning maps; for a
review, see Henderson et al., 2019) interacts with other
known sources of search guidance. The present study
therefore aimed to understand how meaning interacts
with one of these known sources of guidance, spatial
constraint (i.e., scene regions likely to contain the search
target; Brockmole & Henderson, 2006; Brockmole &
Võ, 2010; Ehinger et al., 2009; Neider & Zelinsky, 2006;
Pereira & Castelhano, 2019; Torralba et al., 2006). To
investigate this question, we developed continuously
graded surface maps representing the likely locations of
a search target, and paired these with meaning maps
representing semantic densities in scenes (Henderson &
Hayes, 2017).
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Surfaces as constraints on search in
scenes

The semantic representation of an object in the
context of a given scene guides attention during
visual search (Biederman, Mezzanotte, & Rabinowitz,
1982; Henderson et al., 2007; Henderson, Malcolm, &
Schandl, 2009; Henderson, Weeks, & Hollingworth,
1999; Loftus & Mackworth, 1978). Viewers searching
for an object, such as a pillow, will first fixate
semantically appropriate locations (e.g., bed) over
inappropriate locations (e.g., table), suggesting that
these expected spatial constraints efficiently direct
attention to task- and semantically relevant information
(Brockmole & Henderson, 2006; Brockmole & Võ,
2010; Ehinger et al., 2009; Henderson et al., 1999;
Loftus & Mackworth, 1978; Neider & Zelinsky, 2006;
Pereira & Castelhano, 2019; Torralba et al., 2006).

Spatial constraint has been modeled in different
ways. Torralba et al. (2006) successfully predicted the
likely locations participants would search for an object
in a scene using horizontal bands that represented
where a given target object was most likely to be located
given the global physical structure of that scene. These
bands were learned from a large number of scene
exemplars. An issue with this approach, however, is that
the predicted spatial constraints were coarse and were
not tied to surfaces or objects in a particular scene.
Indeed, when participants in the study by Torralba and
colleagues searched for coffee mugs, they sometimes
looked at specific surfaces associated with coffee mugs
outside of the region predicted by the horizontal
band.

This was remedied by Pereira and Castelhano
(2019), who operationalized spatial constraint as the
upper (e.g., ceilings, walls), middle (e.g., countertops,
tables), and lower (e.g., floors) horizontal surface
regions associated with target objects within a scene.
A limitation of the approach taken by Pereira and
Castelhano (2019), however, was that their method
generated binary spatial constraints: only surfaces
within a given horizontal surface region were taken to
be predictive of target object location, whereas other
scene regions were not predictive. Furthermore, all of
the surfaces within a given horizontal band were equally
predictive of target object location. However, it seems
likely that there is a continuous distribution of surface
constraints for many target objects (e.g., garbage bins
might be more likely to appear on the sidewalk than in
the road, even though both sidewalks and roads appear
in lower scene regions). In the present study, we offer an
approach to spatial constraint based on scene surfaces
that provides a continuum of constraint.

To generate continuous surface maps, we first parsed
scenes into their constituent elements (objects and
surfaces) and had a group of participants assign labels

to those elements. We then asked a separate group of
participants to rank the labels of the elements in each
scene based on the degree to which those elements
could serve as the location for each of three search
targets (garbage bins, drinking glasses, and paintings).
For example, for a drinking glass, “table” would likely
be ranked higher than “ceiling.” Scene elements were
ranked in a generic scene-independent manner; we
presented the targets and surface elements using labels
without a visual scene (see Figure 2). The element
rankings were then mapped back onto scenes to capture
target–surface relationships in a continuous fashion.
Because surfaces in the foreground occlude background
surfaces, we used image-computable three-dimensional
depth information (Laina et al., 2016) to account for
occlusion. Finally, we accounted for the tendency
of objects to extend above the tops of surfaces by
generating a target object height constant for each
object and its highly ranked surface elements. The
height constant reflected how tall a given target object
would appear at a given depth. The resulting surface
maps continuously represented the likely locations of
search target objects in scenes while considering depth
from the viewer.

Meaning as a constraint on search
in scenes

Meaning maps represent the continuous spatial
distribution of local semantic densities in scenes
(Henderson & Hayes, 2017), allowing direct study
of how semantics influence attention during visual
search. Recent studies show that meaning predicts eye
movements during letter search (Hayes & Henderson,
2019). Meaning maps provide a framework to test how
the spatial distribution of semantic densities interact
with other known sources of guidance (e.g., spatial
constraint) during visual search. Despite the usefulness
of meaning maps, visual search models have not yet
incorporated meaning maps as a source of guidance.

Combining meaning and surfaces

Spatial constraint interacts with image salience to
guide attention during visual search (Ehinger et al.,
2009; Torralba et al., 2006). Given the correlation
between image salience and meaning in real-world
scenes (Elazary & Itti, 2008; Henderson, 2003;
Henderson et al., 2007; Henderson & Hayes, 2017,
2018, p. 201; Rehrig et al., 2020; Tatler et al., 2011) and
the finding that meaning accounts for most if not all of
the variance in eye fixations when the intercorrelation
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Figure 1. Schematic of surface map model. If the goal is to find a painting in a media room (a), the probability that a painting will
appear on one surface (walls) over another surface (floors) will drive attention to the more probable region (b). Analogously,
meaningful (informative) scene regions are more likely to guide attention than those that are less meaningful (c). Surfaces may inform
meaning in that meaningful features on highly predictive surfaces are more likely to be prioritized for attention (white) than those on
nonpredictive surfaces (black) (d).

between meaning and saliency is controlled (Hayes &
Henderson, 2019; Henderson & Hayes, 2017, 2018;
Peacock et al., 2019b, 2019a, 2020; Rehrig et al., 2020),
spatial constraint might also interact with meaning to
guide eye movements.

In previous research, spatial constraint has been
represented using image-based bands that are not tied
to a specific scene surface (Torralba et al., 2006), or to
surfaces in a binary fashion (Pereira & Castelhano,
2019). Here we represented spatial constraint related
to surfaces as a continuum associated with a given
target object. Given that meaning predicts attention
during visual search (Hayes & Henderson, 2019) and
that eye movements are restricted to scene regions
associated with target objects (Castelhano & Heaven,
2011; Castelhano & Henderson, 2003; Castelhano &
Witherspoon, 2016; Pereira & Castelhano, 2019), we
examined the combined role of target-related surfaces
and meaningful scene regions on eye movements during
visual search for objects in real-world scenes (Figure 1).

Methods

Eyetracking

Participants
The sample size was set with an a priori stopping

rule of 30 acceptable participants based on prior
experiments using these methods (Peacock et al., 2019b,
2019a, 2020). To reach 30 acceptable participants,
37 University of California, Davis, undergraduate

students with normal to corrected-to-normal vision
initially participated in the experiment (28 females,
average age = 20.51). All participants were naïve to
the purpose of the study and provided consent. Eye
movement data from each participant were inspected
for excessive artifacts owing to blinks or loss of
calibration. Following Henderson and Hayes (2017),
we averaged the percent signal ([number of good
samples/total number of samples] × 100) for each trial
using customMATLAB code. The percent signal across
trials was averaged for each participant and compared
with an a priori 75% criterion for signal. Overall, no
participants were excluded based on this criterion of
poor eyetracking quality. Individual trials that had less
than 75% eyetracking signal were also excluded. Only
10 total trials (0.44% of the total data) were excluded
based on this criterion.

Participants were also excluded if they did not do the
task correctly. The percentage of target absent trials in
which each participant erroneously indicated there were
targets (even though the scene was target absent) was
calculated. If this occurred on more than 25% of trials,
that participant was excluded, resulting in the removal
of seven participants. These criteria resulted in analyses
based on a total of 30 acceptable participants as per the
stopping rule.

Apparatus
Eye movements were recorded using an EyeLink

1000+ tower mount eyetracker (spatial resolution
0.01° rms) sampling at 1000 Hz (SR Research, 2010b).
Participants sat 85 cm away from a 21” monitor, so
that the scenes subtended approximately 26.5° × 20.0°
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of visual angle at 1024 × 768 pixels. Head movements
were minimized using a chin and forehead rest. Viewing
of the scenes was binocular, but eye movements were
recorded from the right eye. The experiment was
controlled using SR Research Experiment Builder
software (SR Research, 2010a). Fixations and saccades
were segmented with EyeLink’s standard algorithm
using velocity and acceleration thresholds (30°/s and
9500°/s2; SR Research, 2010b). Resulting segmented
eye movement data were imported offline into Matlab
using the EDFConverter tool. The first fixation, always
located at the center of the display as a result of
the pretrial fixation marker, was eliminated from the
analysis. Given that we were interested in search activity
and not target decision processes, we only analyzed data
from target absent trials.

Fixations that landed off the screen, and any
fixations that were less than 50 ms or greater than 1500
ms were eliminated as outliers. Occasionally, saccade
amplitudes are not segmented correctly by EyeLink’s
standard algorithm, resulting in large values. Given
this, saccade amplitudes of more than 25° were also
excluded. Fixations corresponding to these saccades
were included as long as they met the other exclusion
criteria. This outlier removal process resulted in loss of
2.22% of the data.

Stimuli
We selected 105 digitized photographs (1024 × 768

pixels) of indoor and outdoor real-world scenes for
this study, with 35 scenes dedicated to each target
object (i.e., 35 scenes for garbage bins, 35 scenes for
drinking glasses, 35 scenes for paintings). Ten scenes
from each target set were target present and 25 scenes
from each set were target absent. Target present scenes
had one or more target objects in the scene and served
as fillers to ensure that participants explored each scene
fully. Data analysis focused on target absent scenes so
that influences of the target itself on eye movements
would be excluded. All instruction, calibration, and
response screens were luminance matched to the average
luminance (M = 0.43 L) of the scenes.

Paintings, drinking glasses, and garbage bins were
selected as the target objects because these objects
reside in the upper, middle, and lower horizontal regions
of scenes, respectively. This approach allowed us sample
target locations across the full areas of the scenes,
consistent with Torralba et al. (2006) and Pereira and
Castelhano (2019).

To select suitable target absent scenes, we first
identified scenes that did not contain the target object
from a large “in-house” database of annotated scenes.
Care was taken to ensure that there would have been
enough space for each of the target objects in these
scenes. From here, only indoor scenes were used for
paintings, because paintings typically reside on indoor

walls. Both outdoor urban scenes and indoor scenes
were used for garbage bins, because garbage bins
typically appear on the floor in manmade settings.
Finally, indoor (e.g., kitchens, offices, bars) and outdoor
scenes (e.g., back patios) that contained manmade
horizontal support surfaces were selected for drinking
glasses.

Procedure
Each run of the experiment consisted of six practice

trials and 105 randomized experimental trials split into
three counterbalanced target object blocks (35 trials in
each block). In each trial, a central fixation was shown
on the screen for 400 ms to orient participants to the
center of the screen where a word cue would appear.
Then, a word cue was presented for 800 ms indicating
the search target for that scene. After the word cue, the
central fixation cross reappeared for 400 ms before the
search phase of the experiment. The search scene was
then presented for 10s (Torralba et al., 2006). While the
search scene was present on the screen, participants
were instructed to count the number of target objects in
the scene and to press “Enter” on a keyboard when all
of the objects were found. Possible answers were either
“zero targets” or “one or more targets.” Participants
were instructed that there could be multiple targets
present in the scene to encourage them to explore the
scene fully. At the end of each trial, participants used
the button box to indicate how many targets were
present in the scene. Two practice trials (one target
present and one target absent) were administered before
the experiment for each target object (a total of six
practice trials), providing participants an opportunity
to ask any questions they had before beginning the
experimental trials.

After the practice trials, a nine-point calibration
procedure was performed to map the participants’ eye
positions to screen locations. Successful calibration
required an average error of less than 0.49° and a
maximum error of 0.99°. To maintain calibration
throughout the experiment, a calibration check screen
preceded each trial. If the calibration error exceeded
1.00°, the eye tracker was recalibrated.

Surface maps

Participants
Ninety-six University of California, Davis,

undergraduate students who did not participate in the
eye-tracking study participated across three survey
studies (garbage bin n = 34, drinking glass n = 32,
painting n = 30). All participants were naïve to the
purpose of the study and provided informed consent.
The sample size was set with an a priori stopping rule
of 30 acceptable participants for each rating study (90

Downloaded from jov.arvojournals.org on 10/09/2021



Journal of Vision (2021) 21(11):1, 1–18 Peacock, Cronin, Hayes, & Henderson 5

participants total after the a priori participant exclusion
criterion was applied). Participants were removed if
they were guessing; if a participant did not include
either of the top two rankings from the rest of the
participants in their study in more than 25% of trials,
they were excluded from analysis. This resulted in
minimal participant loss (four participants from the
garbage bin task, two participants from the drinking
glass task, and no participants from the painting
task).

Scene labeling and segmentation
All scene elements that were present in any of

the 105 target present and absent scenes were first
identified to form a set of all possible scene element
labels. Elements were defined as objects (e.g., pencil),
groups of densely overlapping objects (e.g., pencils),
and surfaces (e.g., desk, wall) within a scene. Then,
from this global set of labels, each label was mapped

to an individual element or elements within each scene
using the Computer Vision Annotation Tool (CVAT,
https://github.com/opencv/cvat) (Figure 2a).

Labels corresponding with the segmented elements
were used to generate surface rankings for each target
in each scene. Only unique and singular labels from the
segmented scenes were used for the ranking task for each
scene. Any repeated or plural labels were subsequently
re-added during analysis and given the same weight as
the unique and singular labels, respectively. Although
we did not analyze the target present scenes in the
present study, we still acquired their surface rankings.
To decrease confusion to participants for these target
present scenes, we excluded labels that were synonyms
of the target object in these scenes. For the target
“painting,” the following labels were excluded: drawing,
drawings, picture, pictures, painting, paintings, poster,
posters. For the target “drinking glass,” the following
labels were excluded: glass, glasses, cup, cups, mug,
mugs. For the target, “garbage bin,” the following

Figure 2. Surface map generation. After images were segmented and labeled (a), participants ranked labels independent of scenes by
how likely a given target object would be to appear on that surface (b). Surface weightings were then generated (c) and small/unlikely
surfaces were removed. Surface constants were generated by linearly interpolating participant generated size predictions from the
back to front edges of elements. Maps were made by adding polygons filled with weightings from the back/deepest scene region to
the front of the scene (h). A gaussian blur was added to generate the final surface map (i).
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labels were excluded: trashcan, dumpster, trash bin,
bin.

Procedure
Separate on-line surveys were administered for each

target object via Qualtrics. For example, for “drinking
glass,” participants were instructed to indicate the
degree to which each element label named a surface
that a drinking glass could be placed on. Participants
were asked to drag and drop the labels into a provided
box on the computer screen, and to rank order them
based on how likely a drinking glass would be to appear
on that given surface (Figure 2b). Participants were
instructed not to rank (i.e., not to drag into the box)
labels that were not surfaces upon which a drinking
glass would appear. Before beginning the survey,
participants were given an example ranking question
(Figure 2b). For drinking glass, the example labels were
counter, plant, and chair. Participants were instructed
that drinking glasses could be found on a counter and a
chair. However, because drinking glasses are more likely
to appear on a counter than a chair, counter should be
ranked higher than chair. In this example, participants
were told that plant should be left out of the box
because drinking glasses do not appear on plants. The
instructions for garbage bins and paintings were the
same except the most likely surface in each example
ranking question was modified. For garbage bins,
“counter” was replaced with “floor” and for paintings,
“counter” was replaced with “wall.”

For each target object, there were 35 ranking trials
corresponding with the 35 scenes for that target
object category, presented in a random order for each
participant. The labels corresponding with a given
scene were provided in a randomized order to the left
of the ranking column (Figure 2b).

Generating surface weights
We first generated weights corresponding with each

label’s ranking for each participant in each scene. To
calculate each label’s weight, first the total number
of labels that each participant ranked was summed
for each scene. Then, a proportion was computed to
serve as the ranking. If a label was placed first out
of 21 ranked labels for a given scene, it would receive
a participant-level weighting of 21 of 21 (Figure 2c).
If a label was placed second out of 21 ranked labels,
it would be given a participant-level weighting of 20
of 21. If a label was unranked, it would be given a
participant-level weight of zero. If a given participant’s
rankings for a given scene did not include one of the
top two ranked labels from the rest of the participants
for that scene, then that participant’s data for that
scene were excluded. This resulted in the loss of 4.29%
of the data from the garbage bins, 1.91% of the data

from the drinking glasses, and 4.29% of the data
from the paintings. To compute the final weight for
each label, we averaged each label’s weight across
participants. This process resulted in a single weight
for each label corresponding with each element in each
scene.

Eliminating small and nonpredictive elements
Because our primary question asked whether

target-related surfaces guide attention to meaningful
scene regions on those surfaces, it was necessary to
exclude smaller elements that were not predictive of
target object location, but that were located on larger
elements. For example, a spoon is a small element that
might be found on a table, but because a drinking glass
is not likely to appear on a spoon, the spoon rating
creates a “hole” in the table map.

To eliminate small elements, we compared the size
of each element with a size threshold for each target
object category (size = area of element in pixels/area of
scene in pixels). The size threshold was the mean size of
the most predictive elements (i.e., elements with surface
weights greater than or equal to 0.4) for each target
object category: garbage threshold = 0.14, painting
threshold = 0.19, glass threshold = 0.09 (Figure 2d). If
a given element’s size was less than the size threshold
then it was tagged for possible deletion.

To eliminate nonpredictive element ratings from
predictive elements in a principled manner, we first
ranked each element in descending order by scene
based on its surface weighting on the x-axis and plotted
the weighting (Figure 2d) on the y-axis, respectively.
We then fit an exponential function [y = e(–x)] to the
weighting data (Figure 2d). Elements that were under
the weight asymptote for a given scene were tagged for
possible deletion.

If a given element was under both the weight and size
thresholds for a given scene, it was excluded from the
resulting surface map. However, if it was under one or
the other but not both, it was included in the resulting
surface map. This method allowed us to keep elements
that were small but also predictive.

Above-surface constant
Because objects tend to extend in space above the

surfaces or elements they sit on, we added a height
constant to the most predictive horizontal support
surfaces to account for the regions that target objects
occupy above these surfaces.

To generate the value of the above-surface constant,
seven undergraduate research assistants who were
naïve to the purpose of the study indicated how
tall an average sized target would seem to be on
either the front or back edge of highly predictive
surface elements (corresponding with labels weighted
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0.5 or greater) in each scene (Figure 2e). We then
estimated how tall a given target object would be from
the back to the front of the surface elements using
linear interpolation (Figure 2f). We separated the
segmentation for a given surface element into 10 slices
based on the y dimension and expanded the coordinates
based on how tall the target object was estimated
to be at that slice (Figure 2g). Both the expanded
coordinates and the original coordinates were added
to the resulting surface map, because participants
were predicted to look on and above predictive
surfaces (Figure 2h).

Depth maps
Because surfaces in the foreground occlude

background surfaces, we used image-computable depth
maps (Laina et al., 2016) to account for occlusion of
surface elements in the surface maps. The New York
University Depth Dataset is a database of scenes with
ground truth depth values obtained using Microsoft
Kinect (Silberman et al., 2012). This database has
been used to establish benchmarks for various depth
map algorithms. The depth map algorithm we used in
the present article is the state of the art in terms of
predicting these ground truth values (Laina et al., 2016).
Depth maps provide a measure of the predicted depth
of each pixel within an image and therefore allowed
us to estimate how deep a given surface element was
within a scene. With this information, we were able to
add deeper (and likely occluded) surfaces into a scene
first and later add in closer (and likely nonoccluded)
elements.

Surface map generation
After finalizing the weights and constants for each

surface element, we generated empty surface maps by
first creating a 768 × 1024 array of zeros. We then
replaced the existing values on the surface map with
each element’s weighting based on that element’s spatial
location and depth relative to the other elements in the
scene to account for foreground elements occluding
background elements (Figure 2h). Here, elements were
added from the back (deepest) to the front (shallowest)
based on each element’s median depth generated from
the depth maps (Laina et al., 2016). Constant values
for elements corresponding with highly predictive
surfaces were added at the same depth as the respective
element. A Gaussian low-pass filter with a circular
boundary and a cutoff frequency of −6 dB (a window
size of approximately 2° of visual angle) was applied
to each map. The Gaussian low-pass function is from
the Massachusetts Institute of Technology’s Saliency
Benchmark code.1 Although we did not explicitly
conduct tests of subjective depth judgments, the rank

ordering generally agreed with our own subjective
assessments. The only instances where they did not
agree were for surfaces that extended from the front of
a space to the back of a space, such as a floor. In these
instances, these surfaces were set to the deepest depth
so that foreground objects could be placed on top of
them.

Meaning maps

We used the meaning map technique developed by
Henderson and Hayes (2017) (see https://osf.io/654uh/
for code and instructions). To create meaning maps,
scene–patch ratings were performed by 434 participants
on Amazon Mechanical Turk. Participants were
recruited from the United States, had a hit approval
rate of 99% and 500 hits approved, and were allowed
to participate in the study only once. Participants
were paid $0.50 per assignment, and all participants
provided informed consent. Rating stimuli were the
same 105 digitized (1,024 × 768 pixels) photographs
of real-world scenes used for the visual search task.
Each scene was decomposed into a series of partially
overlapping (tiled) circular patches at two spatial
scales. The full patch stimulus set consisted of 31,500
unique fine patches (87-pixel diameter) and 11,340
unique coarse patches (205-pixel diameter), for a total
of 42,840 scene patches. The optimal meaning–map
grid density for each patch size was previously
determined by simulating the recovery of known
image properties as reported in Henderson and Hayes
(2018).

Each participant rated 300 random patches extracted
from 105 scenes. Participants were instructed to assess
the meaningfulness of each patch based on how
informative or recognizable it was. They were first given
examples of two low-meaning and two high-meaning
scene patches, to make sure they understood the
rating task, and then they rated the meaningfulness
of scene patches on a 6-point Likert scale (very low,
low, somewhat low, somewhat high, high, very high).
Patches were presented in random order and without
scene context, so ratings were based on context-free
judgments. Each unique patch was rated three times
by independent raters for a total of 128,520 ratings.
However, owing to the large degree of overlap across
patches, each patch contained rating information
from 27 independent raters for each fine patch and 63
independent raters for each coarse patch. The ratings
for each pixel at each scale in each scene were averaged,
producing an average fine and coarse rating map for
each scene (Figure 3). The average fine and course
rating maps were then combined into a single map
using the simple average and a light Gaussian filter was
applied using the MATLAB function ‘imgaussfilt.m’ set
at 10.
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Figure 3. Map examples. The figure shows an example of each map type for drinking glasses (a), paintings (b), and garbage bins (c).
Each column represents an example scene with fixated (green) versus nonfixated (cyan) regions for a single participant (d), with each
respective surface map (e) meaning map (f), and hypothesized interaction of surfaces and meaning.

Center proximity map

A center proximity map served as a global
representation of how close each location in the
scene image was from the scene center (Figure 4d).
Specifically, it measured the inverted Euclidean distance
from the center pixel of the scene to all other pixels
in the scene image. The center proximity measure
was used in the mixed-effects models described in
the Eyetracking search analysis to account for and
control the role of center bias, the tendency to fixate
centrally, and photographer bias which is the tendency
for photographers to place information of interest to
humans in the center of a photograph (Bindemann,
2010; Hayes & Henderson, 2021; Tatler, 2007; Tseng et
al., 2009) (Figure 4d).

Eyetracking search analysis

To test whether surfaces and meaning interact
to predict fixated and nonfixated regions while also
taking center proximity and scene-by-scene variation
into account, we used a general linear mixed effects
(GLME) model with the link logit (‘binomial’)
distribution (Hayes & Henderson, 2021; Nuthmann et
al., 2017). We focused analyses on the eye movement
data corresponding with target-absent scenes because
we were interested in search behavior with regard to

expected target locations as opposed to actual target
features. Before submitting the data to the GLME,
we z-normalized surface maps and meaning maps
within each target object category to a common scale.
Analyses were conducted separately for each target
object because each of the targets is found in different
scene regions, and the surfaces they reside upon are
different sizes (e.g., floor surfaces are much larger
than countertops). The center proximity map was
z-normalized as well.

For each fixation, we computed the mean map values
by taking the average over a 3° window (113 pixels
in diameter) around each fixation in the surface map
(Figure 4b), meaning map (Figure 4c), and center
proximity map (Figure 4d). To represent scene features
that were not associated with overt attention for each
participant, we randomly sampled an equal number
of scene locations where each particular participant
did not look in each scene they viewed. The only
constraint for the random sampling of the nonfixated
scene regions was that the nonfixated 3° windows could
not overlap with any of the 3° windows of the fixated
locations.

The dependent variable was whether a region was
fixated or not. The fixed effects were the meaning
values, the surface values, and the center proximity
value. Although the primary effect of interest was the
interaction between surfaces and meaning, we modeled
the three-way interaction between surfaces, meaning,
and center proximity to ensure that any effects were not
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Figure 4. Analysis and predictions. The figure shows an example scene (a), surface map (b), meaning map (c), and center proximity
map (d) with hypothetical fixated (green) versus nonfixated (cyan) windows. Predicted results (e) shows that meaningful scene
regions have a higher probability of fixation if these regions overlap with highly predictive surfaces. If meaningful scene regions do
not overlap with highly predictive surfaces, these regions are less likely to be fixated.

due to center bias. Additionally, we included a random
intercept of scene. Including a random intercept of
participant did not account for significant variance, so
this was excluded from each model. We hypothesized
that both meaning and surfaces would influence
probability of fixation, with highly meaningful scene
regions appearing on highly predictive surfaces with the
highest probability (Figure 4e).

Examining common structure in surface maps

Given our hypothesis that scene-specific surfaces
will predict fixations better than scene-independent

bands, we also tested whether the surface maps for
one scene predict fixations for the same scene better
than fixations for another scene. This process allowed
us to examine whether there is common structure
in the surface maps or whether the surface maps
capture scene-dependent variance in where fixations are
directed.

To test whether surface maps for a given scene (scene
A) predict fixated locations for the same scene better
than fixated locations for another scene (scene B), we
computed the mean surface feature values of one scene
(e.g., scene A) using 3° windows corresponding with
all fixations for a given participant from another scene
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(e.g., scene B). This process was repeated for each scene
and participant. From here, we computed the average
surface map value at fixation across participants for a
given scene. This resulted in a 25 × 25 matrix for each
target object in which the diagonals corresponded with
the fixations from the same scene (i.e., scene A surface
map values from scene A fixations) and off-diagonals
which corresponded with fixations from another
scene (e.g.. scene A surface map values from scene B
fixations).

Theoretically, if each surface map is capturing
scene-dependent variance in where people search for
objects, then the diagonal of the matrix should have a
larger value than the off-diagonal value. Conversely, if
the models are only capturing some common structure
in where people search for these objects, then the
matrices should be uniform. To test this, difference
calculations were computed, which produced 25 × 25
difference matrices for each target object. Difference
scores were computed by taking the difference between
the surface feature map values for fixations from the
same scene (i.e., the diagonals) and the surface map
values using fixations from other scenes (off-diagonals).
If a given surface map was more strongly tied with
the fixations from the same scene than another scene,
then the difference score was positive. If a given surface
map was more strongly tied with fixations from another
scene than the same scene, then the difference score
was negative. Difference scores along the diagonal
were 0. The average difference score from each scene
was then computed and submitted to a one-sample
t test comparing the difference scores for each target
object.

Results

Eye-tracking search analysis

Our primary question asked whether fixations are
directed to meaningful scene regions that occur on
target-related surfaces during search in scenes. Figure 5
summarizes the primary data. The plots show that
all three variables were related to fixations during
search for all three targets, with fixations more likely
to be directed to the scene centers, relevant surfaces,
and meaningful regions. To analyze these data, we
used the aforementioned GLME model described in
the methods with fixed effects of meaning, surfaces,
and center proximity predicting whether a region was
fixated or not. The primary effect of interest was the
surfaces by meaning interaction. We also modeled the
three-way interaction between surfaces, meaning, and
center proximity to control for the effect of center bias.

The GLME model results for meaning are visualized
in Figure 6 and Table 1. For drinking glasses, there was
a significant three-way interaction between meaning,
surfaces, and center proximity; for garbage bins, there
was a marginal three-way interaction; and for paintings,
there was no significant three-way interaction. For all
three target objects, there was a significant two-way
interaction between meaning and surfaces, which was
the primary interaction of interest.

We examined the three-way interactions to ensure
center proximity was not modulating the meaning by
surface effects (Figure 7). If the meaning by surface
interaction was driven by center proximity, we would
expect high meaning and surface values to be fixated

Figure 5. Summary plots of the raw eye movement data. Raincloud plots show the center proximity, surface, and meaning
z-normalized feature values on fixated (blue) and nonfixated (pink) scene regions for garbage bins (a), paintings (b), and drinking
glasses (c). For each box plot, the whiskers refer to the minimum (25% quartile – 1.5 × interquartile range) and maximum (75%
quartile + 1.5 × interquartile range) feature values, the box refers to the 25% and 75% quantiles, and the central, vertical line refers
to the median. Each dot corresponds to the average feature value for a given fixated or nonfixated window.
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Figure 6. Model fits. The log odds (left column) and the marginal effects (right column) for the garbage (a), painting (b), and drinking
glass (c) models are visualized. A log odds of 1 indicate that neither positive nor negative values of a predictor are likely to occur with
fixated regions. Al og odds of greater than 1 (blue) indicate that positive values of a predictor are more associated with fixated
regions, whereas a log odds of less than 1 (red) indicates that negative values of a predictor are associated with fixated regions.
Marginal effects plots (right column) show the probability of fixation for each fixed effect as a function of z-score. Error bands reflect
95% confidence intervals.

at scene centers owing to scene-independent viewing
biases with no surface by meaning interaction in scene
peripheries. For all target objects, meaning values were
more likely to be fixated if surface values were greater
at scene centers (Figures 7a, 7d, 7g). However, this
effect did not change as a function of center proximity:
for fixations further from center (Figures 7b 7e, 7h)
and in scene peripheries (Figures 7c, 7f, 7i), higher
meaning regions were more likely to be fixated if
the corresponding surface values were higher. The
three-way interaction for garbage cans seems to be the
result of the lack of an asymptote in the low probability
surfaces (red curves in Figure 6) at high meaning

values compared with the medium and high probability
surfaces (blue and green curves respectively), which
may have been due to fewer high-meaning regions on
surfaces likely to contain garbage cans (e.g., floors). This
result is consistent with the notion that target-related
surfaces constrain eye movements to meaningful scene
regions, irrespective of scene independent viewing
biases.

Examining common structure in surface maps

Given our hypothesis that scene-specific surfaces
will predict fixations better than scene-independent
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Fixed effects Random effects, SD
Predictors β 95% CI SE Z-statistic p value By-scene

Garbage
Intercept −0.51 [−0.93 to −0.08] 0.21 −2.42 0.02 1.04
Meaning 1.79 [1.73 to 1.85] 0.03 60.58 <0.001
Center proximity 0.43 [0.40 to 0.47] 0.02 22.98 <0.001
Surfaces 1.05 [1.01 to 1.09] 0.02 48.70 <0.001
Meaning × Center proximity −0.16 [−0.20 to −0.11] 0.02 −7.08 <0.001
Meaning × Surfaces 0.71 [0.66 to 0.76] 0.03 27.61 <0.001
Center proximity × Surfaces −0.10 [−0.14 to −0.05] 0.02 −4.46 <0.001
Meaning × Center proximity × Surfaces −0.06 [−0.11 to 0.001] 0.03 −2.01 0.05

Painting
Intercept −0.36 [−0.72 to −0.004] 0.18 −2.06 0.04 0.88
Meaning 1.59 [1.54 to 1.64] 0.03 60.52 <0.001
Center proximity 0.19 [0.15 to 0.23] 0.02 9.83 <0.001
Surfaces 0.97 [0.94 to 1.01] 0.02 48.60 <0.001
Meaning × Center proximity 0.04 [−0.004 to 0.08] 0.02 1.78 0.08
Meaning × Surfaces 0.39 [0.35 to 0.44] 0.02 17.22 <0.001
Center proximity × Surfaces −0.12 [−0.16 to −0.08] 0.02 −5.92 <0.001
Meaning × Center proximity × Surfaces −0.003 [−0.05 to 0.04] 0.02 −0.13 0.90

Glass
Intercept −0.51 [−0.83 to −0.19] 0.16 −3.27 0.001 0.78
Meaning 1.79 [1.74 to 1.84] 0.03 69.35 <0.001
Center proximity 0.35 [0.31 to 0.38] 0.02 18.21 <0.001
Surfaces 0.48 [0.44 to 0.52] 0.02 25.54 <0.001
Meaning × Center proximity 0.13 [0.08 to 0.17] 0.02 5.70 <0.001
Meaning × Surfaces 0.31 [0.26 to 0.36] 0.03 12.31 <0.001
Center proximity × Surfaces −0.15 [−0.19 to −0.11] 0.02 −7.44 <0.001
Meaning × Center proximity × Surfaces 0.11 [0.06 to 0.16] 0.03 4.22 <0.001

Table 1. Meaning × Surface × center proximity GLME results for Each target object. Notes: beta estimates (β), 95% confidence
intervals (CI), standard errors (SE), z-statistic, and p values (p) for each fixed effect and standard deviations (SD) for the scene random
effect. CI = confidence interval; SD = standard deviation; SE = standard error.

bands, we examined whether the surface maps for one
scene predict fixations for the same scene better than
fixations for another scene. This process allowed us
to test whether there is a common structure in the
surface maps or whether the surface maps capture
scene-dependent variance in where fixations are
directed. To test this, we used the difference matrices
described elsewhere in this article. If a given surface
map was more strongly tied with the fixations from
the same scene than another scene, then the difference
score was positive. If a given surface map was more
strongly tied with fixations from another scene than
the same scene, then the difference score was negative
(Figure 8). Difference scores along the diagonal
were 0.

Overall, the surface maps for a given scene were
significantly more related to the fixations from the
same scene than another scene for each of the target
objects, garbage: M = 0.25, SD = 0.32, t(24) = 3.93, p

< 0.001, 95% confidence interval = 0.12–0.38; painting:
M = 0.12, SD = 0.16, t(24) = 3.71, p = 0.001, 95%
confidence interval = 0.05–0.19; and glass: M = 0.19,
SD = 0.21, t(24) = 4.44, p < 0.001, 95% confidence
interval = 0.10–0.27. This finding suggests that the
surface maps are indeed capturing scene-dependent
variance in where people search for objects rather than
scene-independent biases in where people search for
objects.

Discussion

The present study tested how spatial constraints
related to the expected surfaces associated with a
target object interact with meaningful scene regions
to control eye movements during visual search in
real-world scenes. To this end, we generated surface
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Figure 7. Three-way Meaning × Surfaces × Center proximity interaction. This figure shows the probability that meaningful scene
regions were fixated on surfaces that were not predictive of target object locations (red), moderately predictive (blue), and highly
predictive of target location (green) at scene centers (a, d, g), farther from center (b, e, h), and in scene peripheries (c, f, i) for garbage
bins (a, b, c), paintings (d, e, f), and drinking glasses (g, h, i). Error bands reflect 95% confidence intervals.

Figure 8. Examining common structures in surface maps via difference matrices. Differences matrices are visualized for garbage bins
(a), paintings (b), and drinking glasses (c). The diagonals correspond with the difference between the surface map values and fixations
for the same scene and itself (which equals 0). Off-diagonals correspond with the difference between surface map values and
fixations for the same scene minus surface map values and fixations for another scene. Red refers to positive difference scores (i.e.,
the surface map for a given scene is more strongly related to fixations from the same scene than another scene). Blue corresponds to
negative difference scores (i.e., fixations from another scene are more strongly related to a given surface map than fixations from the
same scene).

maps that represented the likely locations of three
target objects (garbage bins, drinking glasses, and
paintings). The surface maps took three-dimensional
depth information into account and represented the
likely locations of target objects probabilistically.
Surface maps were combined with meaning maps
representing the distribution of semantic content
across each scene (Henderson & Hayes, 2017). We then

examined whether surfaces and meaning interacted to
account for fixations in a visual search task in which
participants searched for the target objects. The results
showed that both likely target surfaces and meaningful
regions were more likely to be fixated, with meaningful
regions within likely target surfaces most likely to be
fixated. This effect persisted regardless of how close to
center a given fixation was, suggesting that the effect
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was not due to scene-independent viewing biases. Our
findings provide the first evidence that the visual system
constrains search for real-world objects in scenes to
locally meaningful (recognizable and informative) scene
regions that are most likely to contain those objects.

Objects that we use and search for daily are
constrained by surfaces in different ways, and
our surface maps successfully accounted for these
differences. Garbage bins and paintings are found on
large structural surfaces (floors and walls) that are
invariant across scene categories, whereas drinking
glasses are found on surfaces that change with scene
category (tables/counters in kitchens, desks in offices).
Paintings are typically found on vertical surfaces while
drinking glasses and garbage bins are typically found on
horizontal support surfaces. Finally, target object size
and affordances limit where a target object is likely to
appear (Castelhano & Witherspoon, 2016). For target
objects conforming to these constraints, surface maps
bolstered predictions made by meaning maps, thereby
suggesting that the surface map method of identifying
spatial constraint is sufficiently robust to account for
target objects with different properties.

Prior work testing the influences of spatial constraint
and image salience on eye movements during visual
search shows that combining the two sources of
information accounts for fixations significantly better
than image salience alone (Ehinger et al., 2009; Torralba
et al., 2006). Given that meaning and image salience are
correlated yet meaning predicts attention better than
image salience during visual search in scenes when this
correlation is controlled (Hayes & Henderson, 2019),
a major goal of the current study was to understand
whether spatial constraint interacts with meaning to
control eye movements. In the same way that the visual
system constrains eye movements to physically salient
scene regions within a target-defined region of space
(Ehinger et al., 2009; Torralba et al., 2006), we found
that the visual system also constrains eye movements
to meaningful scene regions on target-related
surfaces.

Another contribution of the current work is the
concept of continuous surface maps. Previous studies
have modeled spatial constraint using a single horizontal
band (Torralba et al., 2006) or a single horizontal
surface representing where a particular object is most
likely to be located (Pereira & Castelhano, 2019). The
current study introduced graded probabilistic surface
maps to account for objects like drinking glasses that
may be found on many different surfaces. Here, we
found that fixations from a given scene were more
related to surface maps from the same scene than
fixations from another scene. This finding, in total,
suggests that surface maps capture scene-dependent
variance in where people search for objects rather
than scene-independent biases in where people attend.
These surface maps were then combined with meaning

maps to predict search eye movements. Combining
surfaces and meaning predicted search eye movements
significantly better than either source of information
alone. This novel combination of surfaces and meaning
provides a powerful framework to understand the
control of attention during visual search.

Scenes are three-dimensional, yet the way we study
them is with two-dimensional photographs. Although
studies have found ways to deal with nuisances
of using two-dimensional photos in the past (e.g.,
by using nonoccluding objects) (Nuthmann et al.,
2020; Nuthmann & Henderson, 2010), summing
representations of occluding objects (Hayes &
Henderson, 2021), or by using chimera scenes
(Castelhano et al., 2018; Man & Castelhano, 2018), the
ability to model scene elements at varying depths is an
important variable that should be taken into account
in models of scene perception. To account for depth
in the present study, we used image-computable depth
maps to iteratively layer surface predictions based
on depth into our maps. This method allowed us to
continuously model the probabilities of surfaces, even
if they were occluded by other surfaces in the scene. We
also accounted for the extent to which target objects
extend above surfaces at different depths by generating
a target object height constant for each object and its
highly ranked surface elements. The resulting surface
maps were able to continuously represent the likely
locations of search target objects in scenes while
considering each surface’s depth from the viewer and
the depth-dependent height of the target object, in a
way that has not been previously done before.

Our findings are consistent with those from Pereira
and Castelhano (2019), who used an attentional capture
paradigm to test whether letter or object distractors
that briefly appeared on target-relevant or irrelevant
surfaces were more likely to capture attention. They
found that distractors were more likely to be fixated if
they appeared on target-relevant surfaces and that this
effect was stronger for object distractors. Similarly, we
found that meaningful scene regions were more likely
to be fixated when they were located on target-related
surfaces even when those meaningful regions did not
contain the target. Together, this finding suggests that
the visual system may specifically use target-relevant
surfaces to constrain the search.

Cognitive guidance theory (Henderson, 2003,
2017; Henderson et al., 1999, 2009) proposes that
people will orient their attention to information that
is relevant to the cognitive system. This can include
semantically informative information in scenes and
task-relevant scene regions. Although surfaces (e.g.,
walls) are not necessarily semantically informative
(because walls are blank), they were task relevant
in the present study. This factor suggests that the
cognitive system integrates knowledge of the task and
knowledge of the environment to highlight regions of
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the scene that are both task-relevant and semantically
informative.

Previous work has shown that the gist of the
scene (basic-level category) is rapidly acquired within
approximately 50 ms of scene onset (Castelhano &
Henderson, 2008; Greene & Fei-Fei, 2014; Oliva &
Torralba, 2001, 2006; Potter, 1975; Potter et al., 2014)
and that scene gist can be used to determine which
scene regions are most relevant to search (Castelhano &
Henderson, 2003). Indeed, past research has found that
spatial constraint allows us to make predictions about
what scene regions will be most task or semantically
relevant for attentional prioritization (Brady et al., 2017;
Brockmole & Henderson, 2006; Brockmole & Võ, 2010;
Ehinger et al., 2009; Neider & Zelinsky, 2006; Torralba
et al., 2006). The current results suggest that we may
similarly use scene gist to pull out target-relevant
surface information.

Conclusions

The present work made two major advances to the
visual search literature. The first is the introduction of
continuous surface maps, which capture constraints
related to the likely locations of target objects in
real-world scenes while taking depth information
into account. The second major advancement is the
novel combination of spatial constraint and meaning.
The results show that during visual search, the visual
system prioritizes meaningful scene regions on highly
predictive surfaces over meaningful scene regions on
target-unrelated surfaces.

Keywords: scene perception, eye movements, meaning,
spatial constraint, visual search
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