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Asymmetric transfer of perceptual learning
of luminance- and contrast-modulated motion
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Perceptual learning was used as a tool for studying motion perception. The pattern of transfer of learning of luminance- (LM)
and contrast-modulated (CM) motion is diagnostic of how their respective processing pathways are integrated. Twenty
observers practiced fine direction discrimination with either additive (LM) or multiplicative (CM) mixtures of a dynamic noise
carrier and a radially isotropic texture modulator. The temporal frequency was 10 Hz, speed was 10 deg/s, and duration was
400 ms, with feedback. Group 1 pre-tested CM for 2 blocks, trained LM for 16 blocks, and post-tested CM for 6 blocks
during 6 sessions on separate days. In Group 2, the LM and CM roles were reversed. The d’ improved almost twofold in
both groups. There seemed to be full transfer from CM to LM but no significant transfer from LM to CM. The pattern of post-
switch improvement was asymmetric as well—no further learning during the LM post-test versus rapid relearning during the
CM post-test. These strong asymmetries suggest a dual-pathway architecture with Fourier channels sensitive only to LM
signals and non-Fourier channels sensitive to both LM and CM. We hypothesize that the channels tuned for the same

motion direction but different carriers are integrated using a MAX operation.
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Introduction

The ability to perceive motion is of crucial importance
to ambulatory organisms. A moving object such as a bird
gliding across the sky gives rise to a series of luminance
changes in the visual image. Such luminance-modulated
(LM, first-order, Fourier) motion can be detected by
correlation devices such as Reichardt detectors (van
Santen & Sperling, 1985) or, equivalently, spatiotemporal
energy detectors (Adelson & Bergen, 1985). These models
can account for human motion perception of a wide class
of stimuli (see Lu & Sperling, 2001b; Papathomas,
Rosenthal, & Julesz, 2002, for reviews). However, there
are various classes of motion stimuli that are easily
perceived by human observers but cannot be detected by
first-order mechanisms (e.g., Cavanagh & Mather, 1989;
Chubb & Sperling, 1988). These second-order (non-
Fourier) stimuli involve isoluminant cues such as contrast,
texture, or disparity (see Baker & Mareschal, 2001; Lu &
Sperling, 2001b; Wilson, 1999, for reviews). For example,
wind blowing through grass gives rise to a series of
changes in local contrast across the image, with very little
change in luminance.

If spatiotemporal energy detectors cannot detect non-
Fourier motion, how is it detected by the brain? The
variety of explanations that have been proposed can be
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organized in two broad classes: single- and dual-pathway
theories. The former posit a shared pathway for both first-
and second-order motion. The simplest way to make
second-order stimuli visible to standard motion analyzers
is to add a non-linear pre-processing stage (e.g., Grzywacz,
Watamaniuk, & McKee, 1995; Taub, Victor, & Conte,
1997). Other models use a fundamentally different motion
detection algorithm based on the ratio of the temporal
derivative and the spatial derivative of the image (e.g.,
Johnston & Clifford, 1995; Johnston, McOwan, & Buxton,
1992; see also Baloch, Grossberg, Mingolla, & Nogueira,
1999). Such gradient-based models can detect various types
of second-order motion (e.g., Benton, 2002; Johnston et al.,
1992). However, converging evidence from a range of
psychophysical (e.g., Edwards & Badcock, 1995; Lu &
Sperling, 1995b, 2001b; Nishida, Ledgeway, & Edwards,
1997; Schofield, Ledgeway, & Hutchinson, 2007; Scott-
Samuel & Georgeson, 1999; Zanker, 1999), analytic (e.g.,
Chubb & Sperling, 1988), neurophysiological (e.g.,
O’Keefe & Movshon, 1998; Zhou & Baker, 1993), neuro-
psychological (e.g., Vaina & Soloviev, 2004), and neuro-
imaging (e.g., Ashida, Lingnau, Wall, & Smith, 2007)
studies indicates that first- and second-order motion CUES
are processed by separate pathways, at least initially.

This suggests a dual-pathway architecture. The tuning
properties of the first-order (Fourier, “quasi-linear”) path-
way can be modeled by a bank of linear filters (see Baker
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& Mareschal, 2001; Lu & Sperling, 1995b, for reviews).
Although it contains non-linearities such as thresholding
and contrast gain control (e.g., Heeger, 1992b), they can
be accommodated with simple modifications to the linear
filter model (see Carandini, Heeger, & Movshon, 1999,
for review). Importantly, the Fourier pathway is blind to
second-order stimuli, which must be processed separately.
The “standard model” for the second pathway is the filter—
rectify—filter (FRF) model (Wilson, Ferrera, & Yo, 1992;
Zhou & Baker, 1993), also termed ‘“second-order”
(Cavanagh & Mather, 1989), “non-Fourier” (Chubb &
Sperling, 1988; Wilson, 1999), “back-pocket” (Chubb &
Landy, 1991), or “complex channel” model (Graham,
Beck, & Sutter, 1992). Although there are differences in
the specific details of these various proposals, there is
emerging consensus about the filter—rectify—filter core.
Figure 1 is a simplified sketch of the dual-pathway
architecture. It is an elaboration of the FRF model of
Wilson et al. (1992). It shows three channels tuned for
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different directions of motion as indicated by the arrows.
The second-order circuits are highlighted in gray. The
information flows upward from the input at the bottom.
The feedback projections (e.g., Treue & Maunsell, 1996),
gain control (e.g., Heeger, 1992b), and internal noise
sources (e.g., Lu & Dosher, 2008) are omitted for
simplicity. Layer b is a bank of filters tuned for a range
of orientations and spatial frequencies (De Valois & De
Valois, 1988). The first-order pathway routes the output of
these filters directly to the motion extractors in layer e
(Adelson & Bergen, 1985; van Santen & Sperling, 1985).
The key component of the second-order pathway is the
non-linear transformation in layer c. It generates compo-
nents not present in the Fourier description of the
stimulus. The specific form' of this non-linearity is not
important for our purposes. The rectified signal is then
smoothed by a second bank of filters in layer d and routed
to the motion extractors in layer e. Within a given
direction of motion, there are multiple channels tuned
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Figure 1. Simplified sketch of a generic dual-pathway architecture for motion processing. It shows three channels tuned for different
directions of motion as indicated by the arrows. The second-order circuits are highlighted in gray. Within each motion direction, there are
multiple channels tuned for different spatial frequencies. The input in layer a is processed by a bank of early spatial filters (layer b). The
first-order pathway routes the filtered signal directly to the motion extractors (ME) in layer e. The second-order pathway includes the filter—
rectify—filter cascade in layers b—d. We propose that the two pathways are combined via a MAX operation (layer f) to achieve cue
invariance. The information is then integrated across motion directions in layer g, and a discrimination decision is made in layer h. Gain
control, internal noise, lateral, and feedback interactions are omitted for simplicity.
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for different spatial frequencies (e.g., Cameron, Baker, &
Boulton, 1992; Nishida, Ledgeway et al., 1997).

Whereas the Fourier pathway is blind to second-order
stimuli, the non-Fourier pathway is not blind to first-order
stimuli. The filter—rectify—filter (FRF) cascade is not an
impenetrable barrier to many luminance modulations. For
example, Edwards and Badcock (1995) performed simu-
lations with a simple FRF model with orthogonal filters
(such as those illustrated in the gray boxes in Figure 1).
Luminance-defined dots produced a response at the
second filter. This is due to the broad spatial frequency
content of the dot stimuli and the additional components
introduced by the rectification. Luminance-defined plaids
are another example (Wilson et al., 1992). The non-linear
transformation generates four new grating components:
two at the same orientations (but double frequencies) of
the plaid gratings and two more at intermediate orienta-
tions. The latter two components play a key role in
determining the pattern direction of certain (“Type 1I”)
plaids in this model (Wilson et al., 1992, p. 81). Thus,
not only does the non-Fourier pathway see luminance-
modulated stimuli, but it plays an integral role in
processing them.

Furthermore, there is psychophysical evidence that the
non-Fourier pathway responds to both first- and second-
order stimuli. The addition of incoherently moving
luminance-defined (LM) dots elevates the coherence
threshold of contrast-defined (CM) motion, whereas
incoherent CM dots have no effect on the LM threshold
(Edwards & Badcock, 1995). Analogous asymmetric
influences have been induced with adaptation (Nishida,
Ledgeway et al., 1997; Schofield et al., 2007).

The available neurophysiological evidence also sug-
gests the same conclusion. Neuronal responses to various
non-Fourier motion stimuli have been recorded in cortical
areas MT and MST in monkeys (Albright, 1992; Churan
& Ilg, 2001; O’Keefe & Movshon, 1998) and in areas 18
and 19 in cats (e.g., Mareschal & Baker, 1999; Zhou &
Baker, 1993; see Baker & Mareschal, 2001, for review).
The results showed significant variability along a continuum
of directional selectivity to first- and second-order motion.
All studies identified a substantial population that is
directionally selective to the former but not the latter.
Another large population is directionally selective to
both. Few neurons were found to respond selectively to
second- but not first-order motion. See Appendix A for
details.

In sum, in this article we tentatively assume the dual-
pathway architecture outlined in Figure 1. The Fourier
pathway is sensitive and fast in processing first-order
motion but is blind to second-order motion. The non-
Fourier pathway can detect both, but its sensitivity and
speed are inferior to those of the direct pathway. We
eschew the common terminology second-order pathway
because it invites the misleading notion of a dedicated
channel specific to second-order motion.
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The outputs of these two pathways are integrated at a
later stage into a unified motion percept. It is possible to
achieve motion cancellation (rather than transparency) of
superimposed oppositely directed luminance and contrast
modulations (Lu & Sperling, 1995b, Experiment 4; see
also Stoner & Albright, 1992). This suggests that the two
pathways ultimately converge. The principles of operation
of this integration stage are currently unknown. There is
active empirical research on the motion integration in
complex stimuli that contain Fourier energy at multiple
orientations (e.g., Adelson & Movshon, 1982) and
directions (e.g., Qian, Andersen, & Adelson, 1994).
Various models have been proposed (see Snowden &
Verstraten, 1999, for review). In comparison, the integra-
tion of first- and second-order motion has received
relatively little attention (Maruya & Nishida, 2010; Stoner
& Albright, 1992; Victor & Conte, 1992; Wilson et al.,
1992).

The influential model of Wilson et al. accounts for a
wealth of behavioral data with plaids (Wilson et al., 1992)
and transparent motion stimuli (Kim & Wilson, 1994).
The model has a bank of Fourier units with preferred
directions spanning 360 deg and a bank of non-Fourier
units that also span 360 deg. A third bank of pattern units
combine inputs from the component units using a cosine-
weighted sum across directions. Translated into the
framework of Figure 1, the component and pattern units
would occupy layers e and g, respectively. As the weights
vary as a function of direction only (Wilson et al., 1992,
Equation 8), the Fourier and non-Fourier components
tuned for any particular direction are integrated via
simple (unweighted) summation. In Figure 1, this model
would route the signals from layer e directly to layer g,
bypassing the MAX operation in layer f.

The present article advances the hypothesis that an
additional integration step occurs within each motion
direction, prior to the global integration across directions.
We need to introduce some terminology to clarify this
distinction. By definition, a set of units (or channels or
detectors) is aligned when their preferred direction of
motion is the same. For example, Figure le shows four
units that are all tuned for upward motion and are
therefore aligned. In addition, a cue property is any
stimulus property other than the direction of motion. The
order of motion (first vs. second) is a cue property and so
is spatial frequency. Aligned units can be tuned for
different cues as illustrated in Figure 1.

Our working hypothesis is that the units within a given
alignment class are integrated to achieve invariance with
respect to the cue properties. Following the terminology in
the physiological literature (e.g., Albright, 1992; Zhou &
Baker, 1993), we will refer to the resulting units as form-
cue invariant. Our specific hypothesis is that the integra-
tion occurs by taking the maximum of the cue-specific
signals. This is depicted in Figure 1 by the elements
labeled MAX in layer f. The MAX operation is used in
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object recognition models (Riesenhuber & Poggio, 1999;
Serre, Oliva, & Poggio, 2007) to achieve scale and
position invariance. It is superior to averaging because it
preserves the sharpness of the tuning curve for the
attribute of interest (motion direction in our case) while
broadening the tuning for other attributes (Riesenhuber &
Poggio, 1999). It can be implemented by neurophysiolog-
ically plausible circuits (Yu, Giese, & Poggio, 2002) and
accounts well for the response properties of a subclass of
complex cells in V1 (Ilan, Ferster, Poggio, & Riesenhuber,
2004) and V4 (Gawne & Martin, 2002). A softened
variant of the MAX operation (“softmax’) accounts for
the integration of end-stopped V1 afferents to MT neurons
(Tsui, Hunter, Born, & Pack, 2010).

A related operation is winner-takes-all (WTA, e.g.,
Yuille & Grzywacz, 1989). MAX collapses the input
vector to a single number, whereas WTA transforms it
into a sparse vector. The two operations are complemen-
tary. MAX preserves the amplitude but not the identity of
the “winner neuron,” whereas WTA preserves the identity
but not the amplitude (Yu et al., 2002). Thus, MAX is
useful for achieving form-cue invariance, whereas WTA
is useful for selecting a value along some continuum of
interest. In motion models in particular, WTA? has been
proposed for integrating across different directions and
velocities (e.g., Nowlan & Sejnowski, 1995; Wilson et al.,
1992). In Figure 1, this type of integration is represented
in layer g.

Our present proposal is that an additional, MAX
integration stage occurs within each set of aligned
channels (Figure 1f). The MAX integration promotes
form-cue invariance and precedes the WTA competition
between the sets. The neural implementation of MAX and
WTA (and gain control) is based on the same mechanisms
(e.g., feedback, pooled inhibition; Heeger, 1992a, 1992b;
Yu et al., 2002; Yuille & Grzywacz, 1989). It seems
plausible that the motion system uses both operations in
the arrangement in Figure 1. This architecture makes
sense from a computational point of view and is also
consistent with behavioral data, to which we now turn.

In this article, we use perceptual learning as a tool for
studying motion processing. Visual perceptual learning is
defined as practice-induced improvement in visual tasks
(see Fahle & Poggio, 2002; Fine & Jacobs, 2002; Gilbert,
Sigman, & Crist, 2001, for reviews). It has been docu-
mented in visual search (e.g., Ahissar & Hochstein, 1997),
texture discrimination (e.g., Karni & Sagi, 1991), orienta-
tion discrimination (e.g., Dosher & Lu, 1998), Vernier
acuity (e.g., Fahle & Edelman, 1993), face identification
(e.g., Gold, Bennett, & Sekuler, 1999), and motion
detection and discrimination (e.g., Ball & Sekuler, 1987;
Huang, Lu, Tjan, Zhou, & Liu, 2008; Law & Gold, 2008;
Liu, 1999; Matthews & Welch, 1997; Watanabe, Nanez,
& Sasaki, 2001). The learning effects are typically long-
lasting and (partially) specific to the particular stimuli
used in training (e.g., Ahissar & Hochstein, 1996, 1997,
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2004; Ball & Sekuler, 1987; Crist, Kapadia, Westheimer,
& Gilbert, 1997; Fahle & Edelman, 1993; Liu, 1999;
Matthews & Welch, 1997).

Our present focus is the integration of first- and second-
order motion. To our knowledge, there are only two
published studies of perceptual learning of non-Fourier
motion (Chen, Qiu, Zhang, & Zhou, 2009; Zanker, 1999).
Zanker’s (1999) pioneering study measured coherence
thresholds for coarse direction discrimination (up Vs.
down) of three types of random dot kinematograms
labeled @, p, and 6. All three types were perceived as
rectangular objects moving in front of a dynamic noise
background. The object consisted of a collection of dots
that were in a characteristic relation relative to the
observer and to the moving object itself. In Fourier (®)
motion, the dots moved coherently in the direction of
object motion. That is, the dots moved relative to the
observer but did not move relative to the object. In drift-
balanced motion (u, Chubb & Sperling, 1988), these
relations were reversed: The dots did not move relative to
the observer but moved relative to the object. Finally, in
motion from motion (6, Zanker, 1993), the dots moved at
a right angle to the direction of object motion. Zanker
(1999) referred to @ as primary motion and u and 0 as
secondary motion. Six experimental groups explored all
pairwise combinations of training with one type and
testing with another. The main finding was that all three
types of training induced perceptual learning but the
pattern of transfer was highly asymmetric. Secondary
training transferred fully to primary stimuli but primary
training did not transfer to secondary stimuli.

This asymmetry adds to the converging evidence
against single-pathway theories. The 8 — @ transfer was
interpreted in terms of a hierarchical system in which the
output of the motion-from-luminance module is routed
into a motion-from-motion module (Zanker, 1993, 1996).
It was proposed that @ training affected only the first
module whereas 6 training affected both, hence the
asymmetrical pattern of transfer.

The hierarchical interpretation does indeed explain why
there was some transfer from 0 to @, but it does not
explain why there was full transfer. The post-switch
threshold on the @ test after 6 training (Zanker, 1999,
Figure 2, panel b) was statistically indistinguishable from
the asymptotic threshold at the end of @ training (panel a).
This is a problem because the Fourier and non-Fourier
components move in orthogonal directions in 6 stimuli.
Thus, practicing up—down 6 discrimination exercised the
detectors for horizontal Fourier motion. The subsequent ®
test, however, was on vertical Fourier motion. Given that
perceptual learning transfers only partially across orthog-
onal directions (Ball & Sekuler, 1987; Zanker’s own
Experiment 3), the hierarchical interpretation seems to
predict partial 86 — @ transfer rather than full transfer.
There is also a complementary problem. The hierarchical
interpretation explains why there was some ® — 0
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specificity, but it does not explain why there was full
specificity. Training with primary stimuli improves the
early stage of the motion-from-motion cascade, which
should transfer to the subsequent secondary test. However,
the post-switch threshold on the 6 test after @ training
(Zanker, 1999, Figure 2, panel f) was statistically
indistinguishable from the initial 6 threshold of untrained
observers (panel e). These are between-subject compar-
isons, and the error bars are inflated by individual
differences, which are considerable in perceptual learning.
Still, despite its intuitive appeal, the hierarchical inter-
pretation appears less plausible upon closer examination.

There is an alternative interpretation of Zanker’s (1999)
results in terms of figure—ground segmentation, attention,
and/or third-order motion. All three stimulus types
involved an object that moved relative to the noise
background. Lu and Sperling (1995a, 2001b) proposed a
third-order system that computes motion between areas
that are marked as figure in successive frames. The
so-called inter-attribute motion (Cavanagh, Arguin, & von
Griinau, 1989), in which the figure-defining attribute
changes from frame to frame, is a striking example of
this. Third-order motion is closely tied to attention and it
is possible to construct ambiguous displays that change
direction depending on which attribute is attended
(Cavanagh, 1992; Lu & Sperling, 1995a). It is possible
that Zanker’s (1999) stimuli engaged the third-order
system, even though simulations with a hierarchical model
(Zanker, 1996) demonstrated that g and 6 motion can be
detected without recourse to attentional or segmentation
mechanisms. If g and 6 training did engage these
mechanisms, the improvement would transfer fully to @
motion. On the other hand, the up—down discrimination of
a @ stimulus could also be performed on the basis of local
Fourier motion of the dots (which move in the same
direction as the object). The observers may have adopted
the latter strategy during their initial training with @
stimuli. However, this strategy is useless for p and 6
stimuli, which explains the complete lack of transfer in
this condition. In sum, it is not obvious whether Zanker’s
(1999) seminal contribution is a study of second- or third-
order motion (or a combination thereof).

The experiment of Chen et al. (2009) clearly deals with
second-order motion. They measured contrast sensitivity
for coarse direction discrimination of drifting luminance-
(LM) and contrast-modulated (CM) gratings in the
parafovea. The results replicated Zanker’s (1999) asym-
metric pattern—full® transfer of learning from CM to LM
and very little transfer from LM to CM. A control group
that did the pre- and post-tests but had no training in
between provided an estimate of the performance gain
attributable to the repeated measurements. That gain on
the CM task was similar to the CM gain in the group that
trained on LM motion. In other words, there was zero
transfer of learning across the LM — CM transition.
Another informative feature of the design of Chen et al.
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(2009) is that the contrast-sensitivity thresholds were
tested at six temporal frequencies ranging from 2 to 30 Hz
for LM and from 2 to 21 Hz for CM. The 8-Hz training
transferred to all frequencies and led to uniform increments
(on a log scale) across the range. This uniformity indicates
that the third-order motion system, which is very sensitive
to temporal frequency (Lu & Sperling, 1995b), probably
plays a negligible role with these stimuli.

Chen et al. (2009) interpreted the asymmetric pattern of
transfer in terms of the “different roles played by
luminance filters in first- and second-order information
processing” (Yifeng Zhou, personal communication,
April 8, 2010). The term “luminance filters” refers to the
common, early portion of the processing pathways, prior
to the rectification in the non-Fourier system (Chen et al.,
2009, Figure 6). The corresponding elements in our
framework are the early spatial filters in Figure 1b. It is
proposed that the LM thresholds are very sensitive to the
efficiency of the luminance filters, whereas the CM
thresholds are relatively insensitive.

There seem to be two problems with this interpretation.
First, the LM and CM stimuli engage early filters of
different spatial frequencies (Figure 1). Second, implau-
sible auxiliary assumptions are needed to account for the
extreme asymmetry of transfer. Specifically, the complete
CM — LM transfer implies that the improvement in LM
sensitivity is entirely due to improved luminance filters.
At the same time, the complete lack of LM — CM
transfer implies that improving the same filters has no
measurable effect on the CM sensitivity. Thus, one needs
to assume that LM and CM training improve the
luminance filters equally well, even though the LM
threshold depends critically on the efficiency of these
filters whereas the CM threshold does not depend at all.

The early-filter interpretation is structurally similar to
Zanker’s (1999) interpretation and encounters similar
problems. Both explain the transfer of learning from
non-Fourier to Fourier stimuli by positing plasticity in
some shared substrate—the luminance filters (Chen et al.,
2009) or the early motion detectors (Zanker, 1999).
However, this shared substrate makes it hard to account
for the complete lack of transfer in the opposite direction.

The strong asymmetry in the pattern of transfer suggests
that a non-linear switch occurs somewhere in the system.
Our working hypothesis attributes the switch to the
proposed MAX integration of the Fourier and non-Fourier
pathways in Figure 1f. This MAX hypothesis accounts for
the data of Chen et al. (2009) as follows: During LM
training, MAX selects the quasi-linear pathway and the
plasticity is confined there. LM performance improves,
but the improvement cannot transfer to CM because the
quasi-linear pathway is blind to contrast modulations. In
the other group, CM training strengthens the FRF pathway
to the point where it can compete with the quasi-linear
pathway for the processing of LM stimuli. During the LM
post-test, MAX continues to select the trained FRF
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pathway because now it responds more strongly than the
untrained quasi-linear pathway. The learning effect thus
transfers fully.

The MAX hypothesis makes a critical prediction:
There should be no further improvement after the switch
to LM following CM training. This is because the same
substrate—the FRF pathway—determines the thresholds
both before and after the switch. This predicts no drop in
performance (that is, full transfer) and no subsequent
learning. An extended post-test is necessary to evaluate
this prediction. Zanker (1999) had such an extended post-
test and found no significant improvement in the 6 — ©
group after the switch. This is consistent with the MAX
hypothesis, but for his stimuli, it can also be interpreted in
terms of third-order motion as discussed above.

The primary goal of the present experiment is to
eliminate this ambiguity and test the prediction of the
MAX hypothesis with contrast-modulated stimuli and an
extended post-test.* Arguably, contrast modulation is the
paradigmatic second-order signal (e.g., Chubb & Sperling,
1988; Schofield & Georgeson, 1999). To minimize the
involvement of the third-order motion system, we chose a
temporal frequency (10 Hz) high above the cutoff
frequency for the third-order system (3—6 Hz). Lu and
Sperling (1995b) measured the temporal sensitivity func-
tions (TSFs) for various classes of motion stimuli. The
sensitivity decreased monotonically with increasing tem-
poral frequency in all cases. The cutoff frequency f. was
defined as the frequency at which the sensitivity drops to
one-half of the maximum sensitivity. Luminance- and
contrast-modulated stimuli had virtually identical TSFs,
with f. = 12 Hz (Lu & Sperling, 1995b, Experiment 1).
Thus, our 10-Hz stimuli are too fast for the third-order
system but within the range of the first- and second-order
systems (e.g., Lu & Sperling, 1995b; Schofield et al.,
2007).

Another goal of the present experiment is to evaluate
whether the plasticity site is relatively early or late along
the motion-processing stream. As illustrated in Figure 1,
the early processing stages are cue specific, whereas the
late stages are more integrated and invariant. Conse-
quently, an earlier plasticity site predicts greater specific-
ity of the learning effect, whereas a later site predicts
greater transfer (Ahissar & Hochstein, 1997, 2004). The
complete lack of transfer from Fourier to non-Fourier
motion in the two published studies suggested an early site
(Chen et al., 2009; Zanker, 1999). On the other hand,
research from our laboratory suggests a late site. A pilot
version of the present experiment (Hayes & Petrov, 2009)
found modest transfer of learning from LM to CM motion.
In addition, Van Horn and Petrov (2009) found complete
transfer of learning of LM motion with respect to the
spatial frequency (1 vs. 4 cyc/deg) of the carrier. This is
consistent with a late plasticity site and in particular with
selective reweighting of the connections to the decision
stage in Figure 1h. There is growing evidence that such
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selective reweighting is a prominent mechanism for
perceptual learning (e.g., Dosher & Lu, 1998; Petrov,
Dosher, & Lu, 2005, 2006). It has been implemented in
various models that have accounted successfully for
complex behavioral and neurophysiological data (e.g.,
Law & Gold, 2009; Lu, Liu, & Dosher, 2010; Petrov
et al., 2005, 2006; Vaina, Sundareswaran, & Harris, 1995).
In motion direction discrimination in particular, recent
neurophysiological studies showed that perceptual learn-
ing was accompanied by changes in cortical area LIP but
not MT (Law & Gold, 2008). This strongly suggests
plasticity in the connections from MT to LIP.

What is the reason for this discrepancy—apparently
early plasticity site in some experiments (Chen et al.,
2009; Zanker, 1999) and late in others (Petrov et al., 2005;
Van Horn & Petrov, 2009)? We hypothesize that the
discrepancy may stem from the difference in their
tasks—coarse versus fine discrimination, respectively. In
coarse discrimination (CD, e.g., Zanker, 1999), the direc-
tional difference between the two stimuli exceeds the full
tuning bandwidth of the neuronal populations that repre-
sent them. The two populations do not overlap and the
most diagnostic neurons are the ones whose tuning curves
are centered on the respective stimuli (e.g., Hol & Treue,
2001). When psychophysical CD sensitivity was com-
pared to information measures from single-cell recordings
in monkeys, many individual neurons were as sensitive as
the monkey, and the most sensitive neurons were far
better than the monkey (Britten, Shadlen, Newsome, &
Movshon, 1992). Readout by simple pooling suffices for
CD (Shadlen, Britten, Newsome, & Movshon, 1996).
Coarse discrimination is thus similar to detection. Once
the stimulus is detected, its direction is unambiguous and
CD thresholds can be statistically indistinguishable from
detection thresholds (e.g., Schofield & Georgeson, 1999).
By contrast, in fine discrimination (FD, e.g., Van Horn &
Petrov, 2009), the two directions differ only by a few
degrees. The two stimulus representations thus overlap
significantly and the most diagnostic neurons are the ones
whose tuning curve has the steepest slope at the decision
boundary (Hol & Treue, 2001; Regan & Beverley, 1985).
In single-cell recordings in monkeys performing fine
discrimination, the individual neurons were far less
sensitive than the monkey (Purushothaman & Bradley,
2005). The optimal FD readout gives highest weight to the
flanking neurons and zero weight to the ones centered on
the decision boundary (Jazayeri & Movshon, 2006; Petrov
et al., 2005; Raiguel, Vogels, Mysore, & Orban, 2006;
Seung & Sompolinsky, 1993).

In sum, the coarse and fine discrimination tasks depend
on different neuronal populations and require different
readout schemes. Coarse discrimination is similar to
detection and can be done through simple pooling,
whereas fine discrimination requires sophisticated readout.
This invites the hypothesis that CD thresholds may be
limited by the sensitivity of the early motion extractors,
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whereas FD thresholds may be limited by the precision of
the readout. One testable prediction of this hypothesis is
that CD training may be more stimulus-specific than FD
training. The second goal of the present experiment is to
test this prediction. To our knowledge, this is the first
study of the perceptual learning of fine discrimination of
non-Fourier motion.

Ten observers were pre-tested on a fine motion direction
discrimination task with luminance-modulated (LM, first-
order) stimuli. Then, they practiced the same task with
contrast-modulated (CM, second-order) stimuli for 4
sessions. Finally, they were post-tested with LM stimuli
for another 1.5 sessions. Ten more observers followed the
complementary protocol: CM pre-test, LM training,
extended CM post-test.

The experiment is designed to test the two hypotheses
introduced above. The extended post-test allows us to test
whether additional learning occurs after the switch. The
MAX hypothesis predicts that no such learning should
occur in the CM — LM group. The pre-test provides a
within-subject baseline for measuring the transfer of
learning. The late plasticity hypothesis predicts non-zero
transfer in both groups. The high-frequency (10 Hz)
stimuli are chosen to minimize the involvement of the
third-order motion system and the fine discrimination task
promotes late plasticity.

Many studies of motion perceptual learning involve fine
same—different discriminations (e.g., Ball & Sekuler, 1987;
Liu, 1999). The same—different procedure is eschewed
here because the multiplicity of possible decision strat-
egies complicates the interpretation of the data (Petrov,
2009). To discourage sequential comparisons across trials,
the experimental blocks involve four directions instead of
just two. This also allows us to track the performance at
two separation levels (A = 11° and A = 8°).

Methods
Stimuli

Each stimulus was a mixture of a moving modulator M
(x, y, 1) and a dynamic noise carrier N(x, y, t) (Figure 2).
To generate a luminance-modulated (LM, first-order)
stimulus, these ingredients were combined additively
according to Equation 1, where a = 0.13 is a signal-
strength parameter and C(x, y, #) is the relative luminance
of pixel (x, y) in frame ¢. To generate a contrast-modulated
(CM, second-order) stimulus, the same two ingredients
were combined multiplicatively according to Equation 2,
with signal strength f = 0.90. The strength parameters
were estimated in a pilot study” so that the initial difficulty
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Figure 2. The contrast-modulated stimulus (second-order, bottom
right) is a multiplicative mixture of a band-pass texture (top left)
and dynamic noise (top right). The luminance-modulated stimulus
(bottom left) is an additive mixture of the same texture and noise.
The additive signal-to-noise ratio is exaggerated for illustrative
purposes. The modulating texture moves from frame to frame in
the direction of the arrow.

of the two stimulus types was approximately equal
(Ahissar & Hochstein, 1997):

Clx,y,1) = [aM(x,y, 1) + (1 — a)N(x,y,1)], (1)
C(xayvt):[ﬂM(x’yvt)+(l _ﬁ)]N(xayvt)v (2)
L(x,y,t) = Lo+ C(x,y,1)(Lmax — Lo)- (3)

All stimuli were generated in real time using Matlab
(The MathWorks, 1999) and the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). The presentation duration
was 400 ms (30 frames at 75 Hz). Each noise frame was a
matrix of square tiles with size 2 pixels = 2.78 arcmin.
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The intensity of each tile in each frame was independently
drawn from a Gaussian distribution with mean O and
standard deviation 0.30, clipped between —1.0 and 1.0.

The commonly used (e.g., Chubb & Sperling, 1988)
drifting grating modulator is not appropriate for our fine
discrimination task because the motion direction is
confounded with the static orientation of the grating. A
radially isotropic modulator is necessary. The modulator
also needs to have a well-defined temporal and spatial
frequency. We used filtered-noise textures whose power
spectrum peaked at 1 cycle per degree at all orientations
(Figure 2, top left). The filter had a Gaussian cross-section
with 1 octave full-width at half-height in the Fourier
domain. On each trial, the filter was applied to a fresh
512 x 512 sample of iid Gaussian noise. The mean of the
filtered patch was exactly O and its expected standard
deviation was 0.30. Thirty consecutive frames M(x, y, f)
were cut out of this large patch by sliding (and interpolating
linearly) a square window in the desired direction. At a
speed of 10 degrees per second, the dominant temporal
frequency was 10 Hz—well above the cutoff frequency
of the third-order system (Lu & Sperling, 1995b).

The mixture of signal and noise was presented on the
monitor so that the neutral point C = 0 mapped onto the
gray background luminance Ly = 60 cd/m” (Equation 3).
Finally, a circular mask was applied. The mask had a
semitransparent linear ramp with an inner rim of 5.5 and
an outer rim of 6.5 degrees in diameter.

Apparatus

The movies were presented on a 21”7 NEC Accusync
120 color CRT driven by the ATI Radeon HD2600 Pro
video card of a 2.66-GHz Intel iMac computer. The
monitor was the only light source in the room and was
viewed binocularly with the natural pupil from a chin rest
located =92 cm away. At that distance, 1 degree of visual
angle spanned ~43 pixels (1024 x 768 resolution).

The equipment was calibrated to minimize first-order
artifacts in the second-order stimuli (Lu & Sperling,
2001a; Smith & Ledgeway, 1997). Three known sources
of display non-linearities were addressed: monitor gamma
non-linearity, adjacent pixel non-linearity, and noise
clumping. The monitor gamma function was estimated
via a psychophysical matching procedure (cf., Colombo &
Derrington, 2001) and was verified with a Minolta 1°
luminance meter. A software lookup table defined 255
evenly spaced luminance levels between L, = 2 cd/m?
and Ly, = 118 cd/m®. The adjacent pixel non-linearity
(APNL) is a hardware problem that reduces the mean
luminance of high-contrast transitions along the same
video scan line (Klein, Hu, & Carney, 1996). APNL is
most severe for static vertical square-wave carriers at high
frequencies. It is reduced to negligible levels by our
dynamic Gaussian carrier (Smith & Ledgeway, 1997).
This was verified by direct measurements with the
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photometer. At maximum contrast, the average luminance
of the carrier differed from the uniform background
luminance by less than 0.5%. Most of this discrepancy is
predicted by the natural variability of the noise. Noise
clumping can introduce first-order artifacts when local
patches of noise have non-zero means (Smith & Ledgeway,
1997). Each blob-like region of our texture covers ~50
noise tiles. At that grain size, the local anisotropies are
negligible (Schofield & Georgeson, 1999, Appendix A).
Further reduction of the grain size would be counter-
productive because of increased APNL. Concerns about
non-linearities in the early visual system are addressed in
Appendix B.

Observers

Twenty students with normal or corrected-to-normal
vision participated in the study. They were paid $6 per
hour plus a bonus contingent upon their accuracy.

Task

The fine direction discrimination task was defined with
respect to a reference direction 6 that was either —55° or
35° from vertical. The reference direction was fixed for
each participant (except for a short demo block on Day 1)
and was counterbalanced between participants. Each
block began with two demo trials that explicitly indicated
the reference by drawing a line on the screen. The actual
direction of motion could take four possible values: (6 — 5.5),
(6 —4),(0+4),and (6 + 5.5). The instructions designated
the first two as “counterclockwise” and the last two as
“clockwise.” The observers indicated their binary
response by pressing F or J on the keyboard. Each block
presented all four directions with equal frequencies and in
random order. This design encouraged absolute discrim-
ination and discouraged comparison with the previous
stimulus.

Procedure

The timeline of each trial is illustrated in Figure 3. The
trial began with a brief alert sound followed by a 500-ms
delay. The motion stimulus was presented for 400 ms,
after which the fixation dot reappeared and the behavioral
response was recorded. Auditory feedback (an unpleasant
beep) was given after incorrect responses. The observers
scored one bonus point for each correct response and lost
one point for each incorrect response. The cumulative
bonus was visible at all times and provided visual
feedback. Response times were measured from the
stimulus onset. The stimulus was not terminated if the
observer responded during the motion presentation. To
discourage blind guessing, responses faster than 250 ms
triggered a “slow down” message that stayed on the screen
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51

Inter-trial interval L 1800 ms
50
Response .
50
Stimulus onset . 400 ms
50
Alert onset © 500 ms

Figure 3. Display layout and trial sequence. The motion stimulus
was presented in the middle of the screen for 400 ms. The bonus
points (50 in this example) were displayed above the fixation dot
and were updated depending on the response.

for 1500 ms. Such fast trials were repeated at the end of
the block, as were trials in which an invalid key was
pressed.® The next stimulus was generated during the
inter-trial interval, which took approximately 2000 ms.

The first session began with a verbal instruction and a
physical demonstration using a printed texture that moved
behind a circular aperture in a piece of cardboard. This
was followed by a set of demo trials that were repeated
until the experimenter was confident that the participant
understood the task. Then, the reference direction was
switched and the pre-test began.

Experimental design

The participants were randomly assigned to two
experimental groups. Group 1 trained on luminance
modulation and transferred to contrast modulation. In
Group 2, the roles were reversed. Each observer com-
pleted 6 sessions on separate days. Each session consisted
of 4 blocks of 208 trials each, for a total of 24 blocks
and 4992 trials. Blocks 1 and 2 pre-tested CM in Group 1
and LM in Group 2. The main training—LM in Group 1 and
CM in Group 2—began on block 3 and extended through
block 18. Finally, blocks 19 to 24 post-tested transfer to
CM in Group 1 and LM in Group 2.

Data analysis

Two discriminability values (d’) were calculated in each
block: for the easy (A = 11°) and difficult (A = 8°) pair of
stimuli. The data from each participant were thus reduced
to two parallel d’ profiles across the 24 blocks. To smooth
out the noise and further reduce the data, a non-linear
regression (Equations 4 and 5) was performed on the
group-averaged d' profiles.
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We assume an exponential law of practice (Heathcote,
Brown, & Mewhort, 2000). The standard parameterization
in terms of an infinite asymptote is mathematically elegant
but leads to numerically unstable parameter estimates. It is
better to use the following functional form, which is
algebraically equivalent to the standard exponential
equation but avoids extrapolations to infinity:

e*l/‘[ _ e*n/r e*m/‘r — e i/t

f’?1~,n(t; dWla dna T) =d,

Mmo—mlt — p=n/t +

"omm/t — pmn/t’

(4)

Despite its formidable appearance, Equation 4 is very
easy to interpret. The parameters d,, and d, fix the
performance levels at two reference times m and n, as
illustrated in Figure 4. The reference times are chosen a
priori on the basis of the experimental design. The
performance f,, ,(f) at time ¢ is interpolated between these
two fixed points according to an exponential law with
time constant 7. Equation 4 is translation invariant—that
1S, frun() = frrense(t + ¢) for any constant c:

d ifb=1,
d, if b=2,

d(b) =
f3’1g(b;d3,d13,1'1/208) if3§b§ 18,
fro04(b; dyg, das, T2/208)  if 19 < b < 24.

(5)

The piecemeal Equation 5 describes a given d’ profile in
an economical and theoretically neutral way. It posits
separate exponential curves for the pre-test, training, and
post-test segments. The d within each segment is assumed

A

>

m n t

Figure 4. lllustration of the exponential Equation 4. The parameters
dn, and d, fix the performance levels at reference times m and n.
The time-constant parameter = controls the degree of non-linearity.
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to improve according to an exponential law, but no
assumptions are made about how d’ transfers between
segments. Equation 5 has 8 free parameters. Six of them
are subscripted by block number—d, d», ds, dig, dy9, and
d»4—and describe the d’ at the beginning and end of their
respective segments. The remaining two parameters
estimate the time constants during training (z;) and post-
test (72). The division by 208 converts the time units from
blocks to trials to facilitate comparison with published
data sets.

It will be important to quantify the transfer of learning
from training to post-test. In our experimental protocol,
the critical switch occurs after block 18 (trial 3744). This
leads to the following transfer index (TI):

dig — d,
TT=——. 6
dig — d, (6)

The transfer index is based on the regression parameters
of Equation 5: d; is the initial d’ at pre-test, d;g is the d’ at
the end of training, and d¢ is the post-test d’ immediately
after the switch. In words, the transfer index measures the
improvement on the test stimuli relative to the total
improvement. It complements the specificity index of
Ahissar and Hochstein (1997). The comparison is done
within group, which increases statistical power but
requires that the two stimulus classes yield comparable
d’s. This requirement is met in our data, as we shall see.’

Results and discussion
Descriptive statistics

Figure 5 plots the group-averaged d profiles for the two
difficulty levels (A = 11° and 8°) in the two groups. When
fitted to these 4 profiles independently, Equation 5
accounts for over 92% of the variance with 32 free
parameters (R2 = 0.922, RMSE = 0.089). Hierarchical
regression techniques identify a much more parsimonious
model with 11 parameters (R2 = 0.913, RMSE = 0.093).
The estimates of these 11 parameters are listed in Table 1.
They provide a succinct, high-level description of the
data.

The hierarchical regression is described in detail in
Appendix C. Briefly, the time constants are poorly
constrained by the data and hence common values can
be used for all 4 profiles. In addition, the d on the easy
stimulus pair is proportional to that on the difficult pair.
Therefore, Table 1 lists the d; parameters for the difficult
(A = 8°) profiles only. The corresponding “easy” values
can be obtained by multiplying by k = 1.35. These
regularities eliminate 17 parameters from the saturated
model with negligible reduction of the goodness of fit
(F(17,63) < 1, n.s.).

Recall that noise was added to the luminance-modulated
stimuli to equilibrate the initial performance in the two
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groups. The data indicate that this manipulation is
successful. The pre-test d’ does not differ significantly
between the two types of modulation and the parameters
dy, dy, and ds in Table 1 are common for both groups
(F(3,56) < 1, n.s.). Thus, the differences at post-test cannot
be attributed to differences in task difficulty (Ahissar &
Hochstein, 1997).

Learning effects

Figure 5 shows a clear learning trend during the training
period (blocks 3—18) in all conditions. The difference
dyg — ds estimates the learning effect. It is 0.57 £ 0.23 for
Group 1 and 0.44 = 0.23 for Group 2 (£90% bootstrap
confidence intervals, see Appendix C for details). The
small advantage for Group 1 is not statistically significant
given the inter-group variability (z = 0.59, n.s.). The
approximate equality of the total learning effects in the
two groups allows us to calculate transfer indices accord-
ing to Equation 6.

Asymmetric pattern of transfer

Although the two groups improved along very similar
trajectories, their post-switch performance was strikingly
different. LM training did not transfer to CM (Group 1,
Figure 5, top), whereas CM training transferred fully to
LM (Group 2, middle). The transfer indices in Table 2
quantify this asymmetry. There is hardly any transfer
(12%) in Group 1 and full transfer (97%) in Group 2. The
transfer indices are hard to estimate reliably because
individual observers improve by different amounts, which
destabilize the denominator in Equation 6. This numerical
instability is evident in the relatively wide bootstrap
confidence intervals in Table 2 (see Appendix C for
details). Still, the evidence for a strongly asymmetric
pattern of transfer is overwhelming. The regression
coefficients in Table 1, the group-averaged d’ profiles in
Figure 5, and the individual learning curves for most
observers in their respective groups all point to the same
conclusion.

In sum, the pattern of transfer seems as asymmetric in
our fine discrimination task as it is in previous studies
with coarse discrimination (Chen et al., 2009; Zanker,
1999). The strong asymmetry suggests that learning takes
place at two (or more) separate plasticity sites regardless of
the task. This in turn suggests that the brain circuits for first-
and second-order motion cannot overlap completely.

Asymmetric pattern of post-switch improvement

This brings us to the extended post-test and the critical
prediction of the MAX hypothesis. Recall that it predicts
complete lack of learning after the switch to LM stimuli in
Group 2. The data in Figure 5 (middle panel) confirm this
prediction. There is no significant improvement across
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Parameter Estimate Group 1 LM - CM  Group 2 CM — LM
Beginning pre-test level, both groups d4 0.78 £ 0.10 Regression model 0.12 (—0.11, 0.31) 0.97 (0.79, 1.24)
Final pre-test level, both groups do 1.01 + 0.08 Raw data (A =11°)  0.19 (—0.05, 0.39) 1.04 (0.80, 1.40)
Beginning training level, both groups ds 0.93 + 0.07 Raw data (A = 8°) 0.09 (—0.18, 0.32) 0.85 (0.53, 1.14)
Final training level, G 1 d 1.50 + 0.19 . )

!na ra!n!ng eve, =roup 181 Table 2. Transfer indices for the two experimental groups (80%
Final training level, Group 2 digo 1.37 £ 0.12 . ) .

. ' bootstrap confidence intervals in parentheses). Calculated from
Beginning post-test level, Group 1 d1g.1 0.86 £ 0.10 ) . ) ,
Final post-test level, Group 1 s 1 194 + 0.10 the regression coefficients in Table 1 and the group-averaged d

’ ' for luminance-modulated (LM) and contrast-modulated (CM)
Post-test level throughout, Group 2 dig 2 1.35+0.13 tion direction discriminati t two difficulty level
Easy/hard proportionality, both groups k 1.35+0.02 motion direction discriminations at two difficuly 1evels.
Training time constant, both groups T4 1562 + 608
Post-test time constant, Group 1 To 138 + 65

Table 1. Regression model parameters (+1 bootstrap standard
deviation) for the data in Figure 5. The second column gives the
corresponding symbol in Equation 5. The d parameters are in
d’ units and their subscripts correspond to block numbers.

blocks 19-24 (trials 2745-4992) in this group. The
hierarchical non-linear regression in Appendix C verifies
this. Constraining the parameters of Equation 5 so that
dy9, = da4 does not reduce the fit significantly (#(1,83) <1,
n.s.; the unconstrained estimates are djg, = 1.33 and dy4, =
1.35). Table 1 therefore lists only one post-test parameter
for Group 2.

The seamless transition from CM training to LM post-
test suggests that the same pathway processes both types
of stimuli. This is consistent with the MAX hypothesis
because the CM training may have strengthened the filter—
rectify—filter pathway to the point that it outperforms the
quasi-linear pathway on LM stimuli. Apparently, the MAX
integration stage in Figure 1f continues to select the FRF
pathway after the switch and the d’ remains at asymptote.
No further improvement occurs because 4 sessions of CM
training have saturated nearly all plasticity possible for the
neural substrate in the FRF pathway.

The post-switch dynamics in the other experimental
group is very different, but it too is consistent with the
MAX hypothesis. Consider the beginning of LM training
(block 3, trial 417 in Figure 5, top). Although the LM
stimuli activate both pathways, the FRF pathway appa-
rently is not strong enough to compete with the quasi-
linear pathway during the early training. Therefore, it is
the quasi-linear pathway that controls behavior and reaps

Figure 5. Group-averaged d learning curves (error bars are 90%
confidence intervals within subjects). Each block consists of 104
easy (large symbols) and 104 difficult (small symbols) trials. The
discontinuities in the lines mark switches from luminance- (LM) to
contrast-modulated (CM) motion and vice versa. Pre-test on
blocks 1-2 (trials 1-416), training on blocks 3—-18 (trials 417—
3744), extended post-test on blocks 19-24 (trials 3745-4992).
(Top) LM training does not transfer to CM (Group 1, 10 observers).
(Middle) CM training transfers fully to LM (Group 2, 10 more
observers). (Bottom) The same data are superimposed for
comparison.

the benefit of practice. The LM d’ improves, but the
learning effect cannot transfer to CM because the MAX
operator switches to the FRF pathway at post-test. It is this
abrupt non-linear switch that accounts for the abrupt drop
in the overt performance.

The CM performance immediately after the switch
(d19,1 = 0.86 £ 0.10, Table 1) is not significantly different
from its pre-test level (d; = 0.78 + 0.10). The statistical
power of this comparison is limited by the variability
among the individual observers. The confidence intervals
in Table 2 suggest that the LM — CM transfer index can
be as low as zero (or even slightly negative) or as high as
39% in the group average. A larger sample size is needed
to reduce the uncertainty. We have data from 12 addi-
tional observers® in a related experiment with the same
stimuli (Hayes & Petrov, 2009). The confidence interval
for the transfer index in this sample was from 30% to
72%. Combining the two data sets, it seems that the
population mean is probably between 15% and 45%. In
conclusion, the amount of transfer of LM training to CM
test is highly variable among individuals and seems quite
low on average.

General discussion

Our goal in this article was to use perceptual learning as
a tool for studying motion perception. We obtained
significant learning effects (almost twofold improvement
in d’, Table 1) for both luminance- and contrast-
modulated motion in a fine direction discrimination task.
There was a striking asymmetry in the pattern of transfer
of learning across the two stimulus types—full transfer
from CM to LM (transfer index TI = 0.97, Table 2) but no
significant transfer from LM to CM (TI = 0.12). The
pattern of post-switch improvement was asymmetric as
well. There was rapid and pronounced improvement
during the CM post-test in Group 1 (Figure 5, top) but
no improvement during the LM post-test in Group 2
(middle).

These marked asymmetries seem incompatible with the
single-pathway theory of visual motion processing (e.g.,
Grzywacz et al., 1995; Johnston & Clifford, 1995; Taub
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et al., 1997). This theory predicts high and approximately
symmetric transfer. It may be possible to accommodate
some modest degree of asymmetry in a single-pathway
model (e.g., Johnston et al., 1992), although we are not
aware of any research along those lines. It seems
impossible, however, to accommodate the massive asym-
metry in our data set. The lack of transfer from LM to CM
stimuli establishes the existence of mechanisms that are
critical for CM processing but are not improved during
LM training. Our result thus adds to the growing evidence
against the single-pathway theory (e.g., Ashida et al.,
2007; Edwards & Badcock, 1995; Lu & Sperling, 2001b;
Nishida, Ledgeway et al., 1997; Schofield et al., 2007,
Vaina & Soloviev, 2004; Zhou & Baker, 1993).

The strongly asymmetric pattern of transfer of percep-
tual learning of Fourier and non-Fourier motion has now
been replicated in three independent laboratories with
different tasks and stimuli: (a) coherence thresholds for
coarse direction discrimination of motion-from-motion
kinematograms in the fovea (Zanker, 1999), (b) contrast
thresholds for coarse direction discrimination of LM
and CM gratings in the parafovea (Chen et al., 2009), and
(c) d’ for fine direction discrimination of LM and CM
textures in the fovea (Hayes & Petrov, 2009, and the
present study).

What does this robust result teach us about the
organization of the motion system? The overall empirical
pattern contains four interlocking components: (a) some
specificity of learning in the LM — CM direction, (b) some
CM — LM transfer, (c) apparently full CM — LM transfer,
and (d) apparently full LM — CM specificity. Each of
these provides useful constraints on the theory. Let us
consider them in turn.

The specificity of learning in the LM—CM direction is
the easiest to interpret. We agree with Chen et al. (2009)
and Zanker (1999) that this specificity suggests a dual-
pathway architecture in which second-order processing
depends on some mechanisms that are not improved
during first-order training. In the tentative sketch in Figure 1,
these are the filter—rectify—filter (FRF) channels.

On the other hand, the transfer of learning in the
CM — LM direction suggests an overlap in the mecha-
nisms engaged in the two conditions. There are three
different proposals about the specific nature of this overlap.
Zanker (1999) proposed a hierarchical system in which a
motion-from-luminance module feeds into a motion-from-
motion module. The transfer of learning was attributed to
plasticity in the motion-from-luminance module, which
was engaged by all stimulus types in Zanker’s experiment.
For contrast-modulated motion, Chen et al. (2009)
proposed an analogous scheme in which the early
luminance filters are the shared component. Under our
MAX hypothesis, the shared component is the whole FRF
circuit—everything highlighted in gray in Figure 1. It is
shared in the sense that it can process both luminance- and
contrast-modulated stimuli, but it is not engaged in all
experimental groups at all times. This is one important
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difference between the MAX hypothesis and the two
earlier proposals. Specifically, the FRF pathway is not
engaged during LM training in Group 1. Our working
hypothesis is that when the two pathways are equally
active, the quasi-linear pathway is selected by default. The
support for this hypothesis is twofold. First, there is
evidence that the quasi-linear pathway processes LM
information faster than the FRF pathway (Derrington,
Badcock, & Henning, 1993). This temporal advantage
may break the tie at the integration stage (Wilson et al.,
1992). Second, Edward and Badcock’s (1995) finding that
CM dots seem not to interfere with LM dots of calibrated
contrast also suggests that LM signals are processed by
the quasi-linear pathway when the LM and CM stimuli are
approximately equally difficult. For our experimental
design, we hypothesize that such tie occurs at the
beginning of training with LM stimuli in Group 1, but
no tie occurs during the LM post-test in Group 2. In the
latter case, the extensive CM training has strengthened the
FRF pathway so that it now responds more strongly than
the untrained quasi-linear pathway to our (calibrated) LM
stimuli.

The third empirical constraint is that there appears to be
full transfer of CM training to LM test. As we argued in
the Introduction section, this seems problematic for both
the hierarchical and the early-filter interpretations. To
recapitulate, the carrier of the non-Fourier stimuli moves
in an orthogonal direction (Zanker, 1999) or has higher
spatial frequency (Chen et al., 2009) than the direction or
frequency of the Fourier stimuli. Thus, the non-Fourier
training affects units tuned for values that are not optimal
for the subsequent Fourier test. This predicts a drop in
performance followed by subsequent recovery. The MAX
hypothesis, on the other hand, accounts for the full
transfer in a straightforward manner. The same substrate—
the FRF pathway—determines the behavioral thresholds
both before and after the CM — LM switch. This predicts
no drop in performance (that is, full transfer) and no
subsequent learning. This is exactly what was found
(Figure 5, middle). The extended post-test in our experi-
ment played a key role in testing this prediction.

The fourth empirical constraint is that there appears to be
full LM — CM specificity. Again, this seems problematic
for both the hierarchical and the early-filter interpreta-
tions. Under both proposals, the shared components—the
early motion extractors or filters—are engaged in all
experimental conditions at all times. This predicts transfer
in both directions: from CM to LM (which agrees with the
data) and from LM to CM (which does not). By contrast,
the MAX hypothesis gives a natural account of the full
LM — CM specificity. The shared components—the FRF
circuits—are not engaged during LM training, as dis-
cussed above.

This account depends on an auxiliary assumption: The
MAX elements in Figure 1f are assumed to gate not only
which activation values are propagated to the decision
stage but also which circuits are changed on a given trial.
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Our working hypothesis is that learning occurs in only one
channel per alignment group per trial—the channel with
maximal activation within the group. Multiple alignment
groups can still learn in parallel. Thus, the training
sessions in Group 1 change the quasi-linear channels
only; the FRF channels remain in their pre-training state.
This assumption is reminiscent of the well-documented
attentional influences on perceptual learning (e.g., Ahissar
& Hochstein, 1993, 2002; Gilbert et al., 2001; Paffen,
Verstraten, & Vidnyanszky, 2008; Roelfsema, van Ooyen,
& Watanabe, 2010; Vidnyanszky & Sohn, 2005) and on
learning more generally (e.g., Kruschke, 2003; Mackintosh,
1975). It is not contradicted by the evidence of “task-
irrelevant learning” with subliminal stimuli (Seitz &
Watanabe, 2005; Watanabe et al., 2001) because the
MAX hypothesis concerns the selection among the cue-
specific channels aligned for the same direction of motion,
whereas the experiments of Watanabe et al. (2001) involve
multiple directions.

The lack of LM — CM transfer also suggests an early
plasticity cite. A secondary goal of the present study was
to evaluate the prediction that fine discrimination training
may transfer better than coarse discrimination training.
The current data do not support this prediction. The
transfer index in Group 1 is not significantly different
from zero. This replicates the complete lack of transfer in
the two coarse discrimination studies (Chen et al., 2009;
Zanker, 1999). Taken at face value, this suggests that LM
training induces no changes at the late, form-cue invariant
stages in Figure 1 regardless of the task. This is indeed a
very natural interpretation. However, the substantial
individual differences in the transfer index opens the
possibility that late plasticity occurs in some observers but
not others.” Moreover, we found significant transfer in a
related experiment (Hayes & Petrov, 2009). As we argued
earlier, it is quite possible that the population mean for the
LM — CM transfer index is between 15% and 45%. Note
that this would be entirely consistent with the MAX
hypothesis, or rather with a combination of MAX and
selective reweighting (Dosher & Lu, 1998; Petrov et al.,
2005). According to this combined proposal, there are two
separate plasticity cites—one before and one after the
MAX integration stage. The early plasticity produces
massive transfer from CM to LM and lack of post-test
learning, whereas the late plasticity produces modest
transfer in both directions.

There are two ways in which perceptual learning can
transfer from one stimulus class to another. Direct transfer
occurs when the d’ immediately after the switch is higher
than the initial d’. Indirect transfer occurs when learning is
faster during the post-test than the first training period
(Liu & Weinshall, 2000). In this article, we focused on
direct transfer as quantified by the transfer index in
Equation 6. As we saw, it is not statistically significant
in Group 1. However, there seems to be indirect transfer as
indicated by the steep post-test learning curve (Figure 5,
top, trials 3745-4992). The indirect transfer can be
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quantified by the ratio of the training and post-test time
constants /7, in Equation 5. This ratio has a median of
11 in our bootstrap samples and is greater than 5.5 in 95%
of them. This indirect transfer suggests a late plasticity
site (Jacobs, 2009; Liu & Weinshall, 2000). This is a topic
for future research.

Related research

Asymmetric patterns of transfer of perceptual learning
have been reported in monocular and binocular motion
systems (Lu, Chu, Dosher, & Lee, 2005) and in orientation
discrimination in clear and noisy displays (Dosher & Lu,
2005). A related study (Dosher & Lu, 2006) reports
negligible learning effects in a discrimination task with
luminance-defined letters but significant learning effects
with texture-defined letters. Asymmetric effects on first-
and second-order motion can also be induced by atten-
tional manipulations (e.g., Allen & Ledgeway, 2003; Lu,
Liu, & Dosher, 2000; Whitney & Bressler, 2007) and
adaptation (e.g., Ashida et al., 2007; Whitney & Bressler,
2007). In all these cases, the asymmetry has been
interpreted as evidence for dissociable pathways and/or
learning mechanisms.

The interaction between first- and second-order visual
processing has been investigated in a variety of psycho-
physical studies of masking (e.g., Edwards & Badcock,
1995), subthreshold facilitation (e.g., Lu & Sperling,
1995b), adaptation (e.g., Ledgeway & Smith, 1997;
Nishida, Ledgeway et al., 1997; Turano, 1991), induced
motion (e.g., Nishida, Edwards, & Sato, 1997), motion
aftereffect (e.g., Nishida, Ashida, & Sato, 1994; Nishida &
Sato, 1995; Schofield et al., 2007), plaids (e.g., Stoner &
Albright, 1992; Victor & Conte, 1992), as well as static
textures (e.g., Kingdom, Prins, & Hayes, 2003; Schofield
& Georgeson, 1999; Schofield & Yates, 2005). We focus
our discussion to those studies that are most relevant and/or
contradictory to our results.

Edwards and Badcock (1995) measured coarse direction
discrimination thresholds with random dot kinematograms
consisting of various mixtures of LM (solid gray) dots and
CM (checkerboard) dots. The LM dot contrast relative to
the static noise background was calibrated to equalize the
coherence thresholds of pure LM and pure CM stimuli.
An asymmetric masking effect was found: The addition of
incoherently moving LM dots elevated the CM threshold,
whereas incoherent CM dots had no effect on the LM
threshold. This finding—LM masks CM but not vice
versa—may appear to be the exact opposite of our
asymmetric transfer of learning. Upon closer examination,
however, Edwards and Badcock’s (1995) data seem
entirely consistent with our MAX hypothesis and the
dual-pathway architecture in Figure 1. The filter—rectify—
filter channels are affected by both luminance and contrast
modulations. This requires that CM signals must be
affected by LM noise. On the other hand, the quasi-linear
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pathway is blind to contrast modulations. This allows that
LM signals can be unaffected by CM noise, but only when
the LM thresholds are determined by the quasi-linear
pathway. The latter condition depends on the MAX
integration stage. When the stimuli are calibrated so that
the two pathways are approximately equally active, we
hypothesize that ties are resolved in favor of the quasi-
linear pathway, as discussed above. It seems likely that
the quasi-linear pathway determined the LM threshold in
Edwards and Badcock’s (1995) study. This is analogous to
the training phase in our Group 1. On this interpretation,
the LM threshold was not affected by CM noise (Edwards
& Badcock, 1995) for the same reason that our LM
training did not transfer to CM post-test. The situation
reverses in Group 2 and this explains the apparent
contradiction with Edwards and Badcock’s (1995) data.
To reiterate, we hypothesize that the LM post-test in
Group 2 reflects the operation of the (strengthened) FRF
circuits. Transported to the masking framework, the MAX
hypothesis makes two predictions. First, if the LM
contrast is calibrated as in Edwards and Badcock’s
(1995) study and then the observers practice with CM
stimuli for several days, CM noise is predicted to mask the
LM signal. Second, the same masking is predicted to
occur even without CM training when the contrast of the
LM dots is significantly lower than the contrast needed to
achieve parity with the CM dots.

Nishida, Ledgeway et al. (1997) report an asymmetric
pattern of cross-adaptation with LM and CM motion.
Adaptation to CM motion had no significant effect on the
subsequent LM detection thresholds, whereas adaptation
to LM motion sometimes raised the CM detection thresh-
olds. This asymmetry is consistent with the dual-pathway
architecture if one assumes that the LM detection thresh-
olds are determined by the quasi-linear pathway and that
adaptation affects the cue-dependent circuits prior to the
MAX integration stage (Shin’ya Nishida, personal com-
munication, October 25, 2010). In agreement with the
latter assumption, there is evidence that motion adaptation
can occur even when the adapted motion is not visible (e.g.,
Maruya, Watanabe, & Watanabe, 2008; Nishida & Sato,
1992). However, the LM — CM cross-adaptation effects
were “very weak and/or non-spatial-frequency selective”
(Nishida, Ledgeway et al., 1997, p. 2692). The lack of
spatial-frequency selectivity suggests that adaptation may
also affect the form-cue invariant stages (Figure 1f). This
is consistent with the symmetric cross-adaptation effects
found in other studies (Ledgeway & Smith, 1997; Turano,
1991).

Schofield et al. (2007) report an asymmetric pattern of
transfer of the dynamic motion aftereffect (AMAE'®). The
adaptation to an LM inducer transferred partially (48%) to
a flickering CM test grating, whereas CM adaptation
transferred weakly (28%) to LM (Schofield et al., 2007,
Table 1, averaged across their 3 observers). This asymme-
try is at odds with the asymmetric transfer of perceptual
learning in our study (and those of Chen et al., 2009;
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Zanker, 1999). It is also at odds with the findings of both
Lu, Sperling, and Beck (1997), who found no dMAE
transfer, and Nishida and Sato (1995), who found that
higher order cues can impose a dMAE on LM tests.
Furthermore, symmetric transfer is reported for the related
tilt and contrast-reduction aftereffects (Cruickshank &
Schofield, 2005; Georgeson & Schofield, 2002), but “we
should not necessarily expect all aftereffects to follow the
same pattern of transfer” (Schofield et al., 2007, p. 9).
More research in this area is clearly necessary. One
promising idea is that the MAE may arise from gain-
control adaptation of broadly tuned inhibitory interneurons
(Grunewald & Lankheet, 1996).

Conclusion

We obtained a strongly asymmetric pattern of transfer of
perceptual leaning of luminance- and contrast-modulated
motion in a fine direction discrimination task. CM training
seemed to transfer fully to the LM post-test, but there was
no significant transfer from LM to CM. The pattern of
post-switch learning during the extended post-test was
asymmetric as well. These strong asymmetries suggest a
dual-pathway architecture with Fourier channels sensitive
only to LM signals and non-Fourier channels sensitive to
both LM and CM. We hypothesize that the channels tuned
for the same motion direction, but different carriers are
integrated using a MAX operation.

Appendix A

Neurophysiological evidence

This appendix evaluates various aspects of the proposed
dual-pathway architecture with respect to single-cell
recordings in cortical neurons in monkeys (Albright,
1992; Churan & Ilg, 2001; O’Keefe & Movshon, 1998)
and cats (e.g., Mareschal & Baker, 1999; Zhou & Baker,
1993; see Baker & Mareschal, 2001, for review). All these
studies report that a substantial fraction of the neurons in
motion-sensitive areas seems directionally selective to LM
but not CM stimuli. These neurons can be labeled as “pure
first” and they are the likely substrate of the quasi-linear
pathway in Figure 1.

All theoretical developments in this article depend on
the assumption that the filter—rectify—filter (FRF) pathway
is sensitive to both LM and CM stimuli. In addition to the
psychophysical evidence discussed in the main text (e.g.,
Edwards & Badcock, 1995), this assumption rests on two
complementary neurophysiological findings: the relative
abundance of “mixed” neurons and the relative scarcity of
“pure second” ones. With respect to the former, all studies
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cited above report a large population of cells that seem
directionally selective to both Fourier and non-Fourier
stimuli. Specifically, if we pool the three monkey samples
(Albright, 1992; Churan & Ilg, 2001; O’Keefe &
Movshon, 1998), the share of these “mixed” neurons is
9% in area V1 (3/34), 44% (156/356) in MT, and 50%
(34/68) in MST. Note that these proportions increase
along the cortical hierarchy. As to “pure second” neurons,
only 3 out of 207 MT neurons in the sample of O’Keefe
and Movshon (1998) and 9 out of 106 MT and MST
neurons in that of Churan and Ilg (2001) seemed to respond
selectively to second- but not first-order motion. More-
over, the direction indices of these neurons were ‘“rather
low” (Churan & Ilg, 2001, p. 2302) and their responses to
second-order stimuli were too close to the background firing
rate to be behaviorally relevant (O’Keefe & Movshon,
1998).

The scarcity of “pure second” neurons should be
interpreted with caution because there may be a sampling
bias in favor of cells that respond vigorously to LM
gratings and bars of light—both of which are standard
search stimuli in single-cell recordings. Baker and
Mareschal (2001) explicitly acknowledge that all neurons
in their sample were always first characterized with
sinewave gratings and thus necessarily responded to LM
patterns. This is why we did not include the cat data in the
counts above. Churan and Ilg (2001) and O’Keefe and
Movshon (1998) are less explicit about their methods, but
the fact that both studies found at least some ‘“pure
second” neurons suggests that they avoided this problem.
Still, the extent to which the samples reported in the
literature are representative of the relevant neuronal
populations in the brain remains an open question.

These methodological difficulties notwithstanding,
there are theoretical reasons to expect that “pure second”
neurons are relatively rare. It is hard to achieve exact
cancellation of all Fourier motion energy at all direc-
tions and frequencies.'" The “purity” of a non-Fourier
detector depends on the opacity of the FRF cascade to
luminance modulations. The computer simulations
(Edwards & Badcock, 1995; Wilson et al., 1992) cited in
the Introduction section indicated that an FRF cascade
with orthogonal filters is not opaque to LM dots and
plaids. If the preferred orientations of the early and late
filters were not orthogonal, the transfer functions of the
respective filters would overlap more, making it easier for
LM signals to pass. The neurophysiological evidence
suggests a substantial overlap. Mareschal and Baker
(1999) measured the responses to contrast-modulated
motion stimuli whose carrier and envelope orientations
were manipulated independently. They found no significant
correlation between the preferred carrier orientation and the
preferred envelope orientation. In 9 of 22 neurons, the two
preferences differed by less than 30 degrees (Mareschal &
Baker, 1999, Figure 9C). All neurons in this sample were
screened to have at least 3-octave separation between the
carrier and envelope spatial frequencies. When this
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constraint is relaxed, cortical neurons have been found to
respond to envelope stimuli with closer envelope and
carrier frequencies (O’Keefe & Movshon, 1998).

Finally, some of the “mixed” neurons may be receiving
inputs from earlier “pure first” neurons. This is the likely
substrate for the form-cue invariant units at the integration
stage (Figure 1f; see also Albright, 1992; Zhou & Baker,
1993). This is consistent with the aforementioned finding
that higher cortical areas contain apparently higher
proportions of “mixed” cells. Note also that under our
MAX integration hypothesis, form-cue invariance does
not imply that the firing rates are completely independent
of the cue. The MAX units in Figure 1f are form-cue
invariant in a weaker sense. Namely, they are sharply
tuned for the direction of motion and broadly tuned for the
cue attributes. Some residual form-cue dependence
remains, and the asymmetric transfer of learning suggests
that it can be modified with practice. Even critics of form-
cue invariance concede that “a subpopulation of MT
neurons may be, in a broad sense, form-cue invariant,
even if this property represents the exception rather than
the rule” (O’Keefe & Movshon, 1998, p. 316). This is
precisely what we expect in the architecture outlined in
Figure 1—many more neurons are cue specific than cue
invariant, because cue invariance is achieved by combin-
ing the outputs of multiple cue-specific neurons.

Appendix B

Calibration

This appendix addresses the concern that our data might
be contaminated by first-order artifacts in our second-
order stimuli. To be completely invisible to Fourier
mechanisms, the second-order stimuli must be perfectly
isoluminant. The field has developed sophisticated meth-
ods (e.g., Anstis & Cavanagh, 1983; Lu & Sperling,
2001a) to calibrate the stimuli as close as practically
possible to this theoretical ideal. These fall into two
categories: instrumentation calibration and observer-
dependent calibration. We fully acknowledge the impor-
tance of the former, and the Methods section describes our
efforts in this regard. However, we have conceptual
reservations about the latter. The stated purpose of
observer-dependent calibration (e.g., Lu & Sperling,
2001a) is to correct for non-linearities in the early visual
system itself. For example, the transduction process in the
photoreceptors in the retina is not perfectly linear (e.g.,
MacLeod, Williams, & Makous, 1992), and this induces
first-order artifacts (e.g., Scott-Samuel & Georgeson,
1999; Smith & Ledgeway, 1997). It is argued that such
distortions are not part of the motion-processing system
per se and, therefore, should be corrected. The problem is
that this puts us on a slippery slope. Where does one draw
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the line? Is the processing in the thalamus relevant, for
instance? Another problem is that observer-dependent
calibration introduces what philosophers of science (Hanson,
1958) refer to as theory-ladenness of observation. An
adaptive procedure adds titrated components to the images
until the discrimination performance drops to chance level
or otherwise satisfies some pre-defined criterion (e.g., Lu
& Sperling, 2001a). It seems circular to argue on the basis
of behavioral data obtained with such calibrated stimuli
that there are two independent motion-processing path-
ways. Rather, the independence is assumed a priori and
any interactions are treated as experimental imperfections.
A third problem is that the sensitive calibration methods
(e.g., Lu & Sperling, 2001a) apply to gratings only, and
thereby restrict the empirical base unnecessarily. This is
because they depend on cancellation of modulations at
different phases, which in turn depends on the symmetry
of the sinusoidal gratings. We are aware of no cancellation
method that can be applied to the stochastic textures in our
stimuli. This prevented us from measuring the magnitude
of the “impurities” in the Fourier channel explicitly. It
seems highly unlikely, however, that our CM stimuli
“leak” into the first-order channel because if they did, LM
training would transfer to CM, contrary to the data from
Group 1. Furthermore, dynamic noise carriers have been
shown to reduce the artifacts in some cases (Smith &
Ledgeway, 1997).

Appendix C

Hierarchical non-linear regression

Here we describe the hierarchical non-linear regression
that led to Table 1. We also describe the bootstrap
procedure that generated the confidence intervals and
standard deviation estimates throughout the text.

All analyses were performed on group-average data. The
full data set in Figure 5 consists of 96 points in 4 profiles
(2 groups by 2 difficulty levels). Equation 5 describes one
such profile with 8 parameters. Thus, a fully saturated
model has 32 parameters (R2 =0.922, RMSE = 0.089). Six
parameters were eliminated by using the same time
constants 7, and 7, for all 4 profiles (R2 = 0.916, RMSE =
0.092). In addition, the d for the easy discrimination (A =
11°) seems proportional to the d’ for the difficulty
discrimination (A = 8°). Thus, a single proportionality
coefficient k replaced the 12 parameters for the easy d’
levels (R2 = 0.914, RMSE = 0.093). Three additional
degrees of freedom were eliminated by sharing d;, d», and
ds across the two groups (R* = 0.914, RMSE = 0.093; the
group-specific estimates are d; ; = 0.76, d» 1 =0.98, d3 | =
0.93; dy, =0.79, dy, = 1.03, and d;, = 0.93, where the
second subscript denotes the group). Finally, the lack of
learning in the post-test segment in Group 2 eliminated
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dosr (R* = 0.913, RMSE = 0.094). The small drop in R*
caused by these reductions was amply justified by the gain
in parsimony (F <1 in all cases, n.s.). The resulting model
has 11 free parameters listed in Table 1.

We used the bootstrap method (Efron & Tibshirani,
1993) to estimate the variance of the parameter estimates.
To generate one bootstrap set, the participants were sampled
with replacement, making sure that the set contained
10 individuals from each group. The 11-parameter
regression model was then fitted to the group-averaged
bootstrap data and various transfer indices were calculated
(cf., Table 2). This procedure was repeated 1000 times to
produce the confidence intervals and z-tests reported in the
text.
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'"The specific proposals include full-wave rectification
(e.g., Wilson, 1999), half-wave rectification (e.g., Solomon
& Sperling, 1994), and half-squaring (e.g., Heeger,
1992a).

*More precisely, a softened variant in which several
units remain active (k-WTA) is needed to model trans-
parency (Kim & Wilson, 1994) and to increase the
precision of the representation (Wilson et al., 1992).

*Within the precision of the figures of Chen et al.
(2009). The article is in Chinese and we are not sure of the
details because we cannot read the text. Our presentation
is based on the English abstract and figure captions, as
well as a brief email exchange with Yifeng Zhou.

*Our experiment was designed (Hayes & Petrov, 2009)
and the data were collected before we become aware of
the study of Chen et al. (2009). The latter also uses CM
stimuli but has no extended post-test and thus does not
measure the amount of post-switch learning. A range of
temporal frequencies are surveyed instead. In this and
other respects, the experimental design of Chen et al. is
complementary to ours.

>Specifically, we fixed = 0.90, ran three observers on a
sequence of blocks covering a range of o values, and
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estimated the value (0.13) for which the average first-
order d’ matched the average second-order d’'.

®Less than 0.1% of the total number of trials were
repeated, and most of them came from two individual
observers.

"We also calculated an alternative transfer index based
on between-group comparisons within a given stimulus
class. Both indices pointed to the same qualitative
conclusions.

8In the group that trained with LM motion.

“Part of these differences may also reflect other factors
such as attention and strategy.

1%Static motion aftereffect (sSMAE) is the phenomenon
that, following prolonged viewing of a moving inducer, a
static test pattern appears to move in the opposite
direction. The dynamic MAE is the analogous phenom-
enon with a flickering test pattern. LM adaptation induces
both types of MAE, whereas CM adaptation induces only
dMAE (Nishida & Sato, 1995).

""The careful calibration necessary to minimize first-
order artifacts in second-order stimuli is another manifes-
tation of this difficulty (see Appendix B).
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