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Abstract
As we act on the world around us, our eyes seek out objects we plan to interact with. A growing body of evidence suggests
that overt visual attention selects objects in the environment that could be interacted with, even when the task precludes
physical interaction. In previous work, objects that afford grasping interactions influenced attention when static scenes
depicted reachable spaces, and attention was otherwise better explained by general informativeness. Because grasping is but
one of many object interactions, previous work may have downplayed the influence of object affordances on attention. The
current study investigated the relationship between overt visual attention and object affordances versus broadly construed
semantic information in scenes as speakers describe or memorize scenes. In addition to meaning and grasp maps—which
capture informativeness and grasping object affordances in scenes, respectively—we introduce interact maps, which capture
affordances more broadly. In a mixed-effects analysis of 5 eyetracking experiments, we found that meaning predicted
fixated locations in a general description task and during scene memorization. Grasp maps marginally predicted fixated
locations during action description for scenes that depicted reachable spaces only. Interact maps predicted fixated regions
in description experiments alone. Our findings suggest observers allocate attention to scene regions that could be readily
interacted with when talking about the scene, while general informativeness preferentially guides attention when the task
does not encourage careful consideration of objects in the scene. The current study suggests that the influence of object
affordances on visual attention in scenes is mediated by task demands.

Keywords Eye movements and visual attention · Perception and action · Object-based attention

Introduction

Gaze behavior can speak volumes about an observer’s
goals in the present moment (Henderson, 2017; Henderson,
Shinkareva, Wang, Luke, & Olejarczyk, 2013) and how
one may act on their environment in the immediate future
(David-John et al., 2021; Hayhoe & Ballard, 2005; Hayhoe
& Matthis, 2018; Hayhoe, Shrivastava, Mruczek, & Pelz,
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2003; Pelz & Canosa, 2001; Sullivan, Ludwig, Damen,
Mayol-Cuevas, & Gilchrist, 2021). When planning physical
actions with visual guidance, observers look at objects they
intend to interact with (Hayhoe & Ballard, 2005; Hayhoe
& Matthis, 2018; Hayhoe et al., 2003), and look ahead to
objects involved in later segments of the action sequence
(Pelz & Canosa, 2001; Sullivan et al., 2021). Beyond what
fixations on objects reveal, gaze dynamics can be used
to predict when an observer is about to interact with an
object (David-John et al., 2021). This evidence suggests
that visual attention is systematically deployed to objects
in the environment in the moments leading up to an agent
interacting with an object.

The interactions one could perform with an object
influence visual attention even when observers are not
actively planning to interact with the object. Gomez
and Snow (2017) found that object affordances guide
overt attention during a visual search task; furthermore,
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the influence of affordances on attention is stronger for
physically present objects that are within reach as opposed
to 2- or 3-D object representations displayed on a screen
(Gomez, Skiba, & Snow, 2018). As observers learned
the function or features of novel objects (e.g., as they
learned new pulling affordances of a soap container on
the ceiling), successfully learning the affordances of novel
objects facilitated subsequent search behavior (Castelhano
& Witherspoon, 2016). Taken together, the findings suggest
a strong influence of object affordances on visual attention
in scenes. In the current study, we investigated whether
the aforementioned influence of affordances is driven by
specific object affordances (the ability to be grasped or
manipulated) or to affordances broadly defined (an object’s
ability to be interacted with in any way).

The finding that visual attention orients to objects that afford
interaction is consistent with cognitive guidance theory
(Henderson, Brockmole, Castelhano, & Mack, 2007).
According to cognitive guidance theory, visual attention is
not passively pulled to regions of the scene that stand out
against their surroundings (as asserted by Itti & Koch, 2000;
Parkhurst, Law, & Niebur, 2002), but instead cognitive
systems push visual attention to information-rich regions
of the scene. Visual attention is allocated to informative
objects in scenes moreso than to regions that contrast with
surrounding areas in luminance, orientation, and other
physical properties of the scene, as captured by image-
computable saliency maps (Einhäuser, Spain, & Perona,
2008; Nuthmann & Henderson, 2010), even when the infor-
mation is not task-relevant (Hayes & Henderson, 2019b;
Shomstein, Malcolm, & Nah, 2019) and when contrasts
in physical salience are task-relevant (Peacock, Hayes, &
Henderson, 2019b). In recent work, Henderson and Hayes
(2017) developed a method to capture the spatial distribu-
tion of local semantic information in a scene using meaning
maps, which were designed to be comparable to saliency
maps. To construct the maps, raters were prompted to rate
small patches taken from a real-world scene on the degree
to which each patch was informative or recognizable.
General informativeness as captured by meaning maps has
been shown to account for variance in attention better than
Graph-Based Visual Saliency maps (GBVS; Harel, Koch,
& Perona, 2006) while observers engaged in aesthetic
judgment and memorization tasks (Henderson & Hayes
2017, 2018; Rehrig, Hayes, Henderson, & Ferreira, 2020a),
action and scene description tasks (Henderson, Hayes,
Rehrig, & Ferreira, 2018; Rehrig, Peacock, Hayes, Hender-
son, & Ferreira, 2020b), and free-viewing tasks (Peacock,
Hayes, & Henderson, 2019a). Furthermore, in a recogni-
tion memory task, observers were more likely to resample
previously fixated regions in a scene when those regions
were informative, as captured by meaning maps (Ramey,
Yonelinas, & Henderson, 2020). These findings indicate

that semantic information in scenes guides visual attention,
consistent with the cognitive guidance theory of overt visual
attention.

Meaning maps have shown that the distribution of local
semantic information—broadly defined—guides visual
attention in a scene (Henderson & Hayes, 2017, 2018; Hen-
derson et al., 2018; Peacock et al., 2019a, b; Rehrig et al.,
2020a). While meaning maps have proven useful in demon-
strating the relationship between scene semantics and visual
attention, they were not intended to be a complete rep-
resentation of semantic information in scenes, but instead
were meant to serve as a starting point to quantify seman-
tic information in scenes in a new way. As such, the rating
instruction used to construct the original meaning maps
was intentionally quite broad—to indicate how informa-
tive or recognizable the patch appeared to be, following
Antes (1974) and Mackworth and Morandi (1967)—with
the understanding that the features queried do not capture
all of scene semantics . However, the mapping procedure
is flexible in that the instructions can be modified to tap
into raters’ conceptions of different types of information
in the scene. In our previous work (Rehrig et al., 2020b),
we altered the rating instruction to investigate whether
grasping affordances—the possible grasping interactions
that could be performed with objects in the scene—predict
visual attention when speakers describe actions that could
be carried out in a scene. Our goal was not to develop a com-
putational model that predicts viewer fixations perfectly, but
rather to determine what kind of information in scenes is
most relevant for the cognitive processes that give rise to
overt attention during the action description task. To iso-
late what information is cognitively relevant, we measured
different kinds of information to see what type of informa-
tion predicted visual behavior best. We constructed physical
saliency, meaning, and grasp maps, and correlated each
map with an attention map derived from viewer fixations in
three action description experiments. For typical real-world
scenes, we found that meaning maps explained variance
in attention maps best (consistent with Hayes & Hender-
son, 2019b; Henderson & Hayes, 2017; Henderson et al.,
2018; Peacock et al., 2019b), but meaning and grasp maps
explained comparable variance in attention when scenes
instead depicted reachable spaces. The results suggest that
general informativeness guides attention best overall, but
grasping object affordances can guide attention as well as
general semantic information does when graspable objects
are shown within reach of the camera’s viewpoint—in
other words, when the scene itself is conducive to grasping
objects.

In Rehrig et al. (2020b), we found that both grasping
object affordances and general informativeness guide
visual attention in scenes that depict reachable spaces,
contributing to the evidence that object affordances
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influence attention. However, it remains puzzling that
the influence of object affordances on attention was
weak for scenes that were not optimized for grasping,
given that object affordances predicted attention well in
other studies (Castelhano & Witherspoon, 2016; Gomez
et al., 2018; Gomez & Snow, 2017). We suspect object
affordances underperformed in Rehrig et al. (2020b)
due to the narrow way in which we defined them. Because we
operationalized object affordances as grasping affordances
specifically—a very narrow type of object affordance—
grasp maps were likely unable to capture the influence
of object affordances on attention broadly, and therefore
our prior work may have underestimated the degree to
which object affordances guide visual attention. Rather
than mapping scenes to capture another specific variety
of object affordance, in the current study we constructed
interact maps to capture the degree to which any type of
object interaction (e.g., grasping, sitting, watching, etc.) was
possible in a scene. Once we constructed a broader measure
of object affordances, we re-analyzed the fixation data to
determine which of the three types of semantic information
we quantified was best able to predict attended scene
locations using a hierarchical logistic regression model
that compared meaning, grasp, and interact map values to
determine which features predicted the locations that were
attended in the scene.

The current study expands on Rehrig et al. (2020b) in sev-
eral ways. First, we constructed interact maps for scenes in
the Rehrig et al. (2020b) data set to capture broadly-defined
object affordances in a scene. Second, we constructed mean-
ing, grasp, and interact maps for the 15 scenes that were
not originally included in the Rehrig et al. (2020b) analysis,
doubling the number of scenes included in the Experiment 1
data set (N = 30 scenes). Third, to explore whether task
goals mediate the influence of semantic information in the
scene on attention, we analyzed eye movements in two addi-
tional data sets for which the task was not to describe the
actions possible in a scene: an open-ended scene descrip-
tion task (Henderson et al. 2018; Experiment 4) and a scene
memorization task (Rehrig et al. 2020a; Experiment 5). The
two additional data sets included the same scenes and the
same number of subjects as Experiment 1 in Rehrig et al.
(2020b). Finally, we analyzed the data using a new approach
inspired by Nuthmann, Einhäuser, and Schütz (2017) and
developed by Hayes and Henderson (2021), which enabled
us to examine fine-grained differences between regions that
were selected for attention over other parts of the scene that
were not fixated.

Nuthmann et al. (2017) developed a novel analysis
approach that exploits two key assumptions about overt
visual attention: 1) the regions of a scene that are prioritized
for attention differ from regions that were not attended in

ways that are quantifiable (e.g., using saliency maps) and
2) measurable differences between attended regions and
unattended regions may explain why those regions were
prioritized for attention over others (e.g., the presence of
interesting objects). To that aim, Nuthmann et al. (2017)
divided scenes into a pre-defined grid and assigned each
square in the grid a value of 1 if any fixations fell within the
square, or 0 if the square was not fixated, and conducted a
logistic mixed-effects regression analysis with the average
values for various saliency models and Euclidean distance
from the center of the screen for each square in the grid
as predictors in the model. Hayes and Henderson (2021)
expanded on Nuthmann et al. (2017)’s approach to obviate
the need for a grid, instead measuring center proximity
(inverted from Euclidean center distance) and feature values
(in this case, semantic values for objects computed from
ConceptNet) in a 3◦ diameter window approximating the
size of the fovea around each fixation coordinate, as well as
from randomly sampled locations that were not fixated.

In the current study, we implemented Hayes and
Henderson’s (2021) analysis approach on fixation data from
5 eyetracking experiments previously reported in Henderson
et al. (2018) and Rehrig et al. (2020a, b). Our goal
was to determine whether overt visual attention is guided
by semantic information broadly construed, or by object
affordances. To that aim, we assessed whether general
informativeness, graspability, or interactability predicted
visual attention across 3 different types of tasks: 1) action
description, in which speakers describe the actions that
could be carried out in a scene, 2) scene description,
in which speakers describe a scene however they like,
and 3) scene memorization, in which observers study a
scene in preparation for a later recognition memory task.
Because image salience did not predict attention well
in our previous work (Henderson et al., 2018; Rehrig
et al., 2020b; Rehrig et al., 2020a), we instead focused
only on three different operationalizations of semantic
information in the new analysis: general informativeness,
graspability, and interactability, as captured by meaning,
grasp, and interact maps, respectively. Based on our
previous work (Henderson et al., 2018; Rehrig et al.,
2020a, b), we expected meaning to predict fixated locations
well overall across tasks. With respect to the action
description Experiments (1–3) specifically, we expected
meaning map values to perform better than grasp map
values in Experiments 1 and 2, and we expected both
meaning and grasp map values to predict fixated locations
well in Experiment 3 because the scenes depicted reachable
spaces. If general object affordances as captured by interact
maps predict attention better than the narrowly-defined
grasping affordances, we expected interact map values to
predict fixated locations better than grasp map values in
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all three action description experiments, and to perhaps
rival general informativeness. If object affordances guide
attention even when they are less task-relevant, but might
still be mentioned in a description, we expect interact
map values—and possibly grasp map values—to predict
fixated locations when observers described scenes however
they liked (Experiment 4). Likewise, if object affordances
guide attention generally (as suggested by Gomez et al.,
2018; Gomez & Snow, 2017), not just when the task
is not explicitly linguistic in nature, then we similarly
expect interact map and grasp map values to predict fixated
locations well in a scene memorization task (Experiment 5).

Methods

Eyetracking data collection

Subjects

All subjects were undergraduate students enrolled at
the University of California, Davis who participated in
exchange for course credit. They spoke English as a
first language, were at least 18 years old, and had
normal or corrected-to-normal vision. They were naive
to the purpose of the experiment and provided informed
consent as approved by the University of California,
Davis Institutional Review Board. Thirty-two subjects in
Experiment 1 participated (2 excluded from analysis); 48
participated in Experiment 2 (8 excluded), 49 participated
in Experiment 3 (9 excluded from analysis), 38 participated
in Experiment 4 (8 excluded), and 68 participated in
Experiment 5 (8 excluded). Across experiments, subjects
were excluded from analysis either because their eyes
could not be tracked accurately, or due to errors caused by
software, hardware, or because of experimenter error. In
Experiment 5 only, 30 of the subjects completed a secondary
task in addition to memorizing scenes. The secondary task
was an articulatory suppression task in which subjects
repeated a sequence of digits aloud while viewing the scene,
which was intended to prevent subjects from using internal
language to facilitate memorization of the scene. The
original study showed no effect of articulatory suppression
on the relationship between scene informativeness and
attention (see Rehrig et al. 2020a for details). For the
purpose of the current analysis, we chose to examine the
control condition only (the scene memorization task with no
secondary task) in order to draw a clean comparison with
the description experiments that involved fewer changes in
experimental parameters; data from 30 participants in the
control condition were analyzed.

Stimuli

In all experiments, digitized and luminance-matched pho-
tographs of real-world scenes depicting indoor and outdoor
environments were presented at 1024 × 768 resolution.
There were 30 scenes presented in Experiments 1, 4, and 5,
and 20 in Experiment 2 (15 of which were also presented in
Experiment 1). In Experiment 3, 20 scenes were presented,
15 of which were photographed by the first and third authors
to depict reachable spaces. For those 15 scenes, the authors
confirmed that objects in the foreground of the scene were
within reach of the scene’s viewpoint. The remaining scenes
were drawn from other studies: four from Xu, Jiang, Wang,
Kankanhalli, and Zhao (2014) and one from Rehrig, Cul-
limore, Henderson, and Ferreira (2021). Text was removed
from each scene presented in Experiment 3 using the clone
stamp and patch tools in Adobe Photoshop CS4. One scene
in Experiment 2 showed people in the background of the
image; faces were not present in the other 54 scenes. See
Appendix for all 55 scenes and feature maps.

Apparatus

In all experiments, eye movements were recorded with
an SR Research EyeLink 1000+ tower mount eyetracker
(spatial resolution 0.01) at a sampling rate of 1000 Hz.
Head movements were minimized using a chin and forehead
rest integrated with the eyetracker’s tower mount. Although
viewing was binocular, eye movements were recorded from
the right eye only. The experiment was controlled using SR
Research Experiment Builder software. Audio was recorded
digitally at a rate of 48 kHz using a Shure SM86 cardioid
condenser microphone.

In Experiments 1, 4, and 5, subjects sat 85 cm away from
a 21” monitor such that scenes subtended approximately
27◦ × 20.5◦ visual angle, and audio was recorded digitally
at a rate of 48 kHz using a Roland Rubix 22 USB
audio interface and a Shure SM86 cardioid condenser
microphone. In Experiments 2 and 3, subjects sat 83 cm
away from a 24.5” monitor such that scenes subtended
approximately 27◦ × 20.5◦ visual angle at a resolution of
1024 × 768 pixels, presented in 4:3 aspect ratio. For both
Experiments 2 and 3, data were collected on two separate
systems that were identical except that the operating system
for the subject computer in one system was Windows 10,
and Windows 7 on the other.

Procedure

A calibration procedure was conducted at the beginning
of each session to map eye position to screen coordinates.
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Successful calibration required an average error of less than
0.49◦ and a maximum error below 0.99◦. Fixations and
saccades were parsed with EyeLink’s standard algorithm
using velocity and acceleration thresholds (30◦/s and
9500◦/s2; SR Research, 2017).

After successful calibration, subjects received task
instructions. In Experiments 1 and 2, the instructions were
as follows: “In this experiment, you will see a series
of scenes. In each scene, think of the average person.
Describe what the average person would be inclined to
do in the scene. You will have 30 s to respond.” In
Experiment 3, subjects were instead instructed as follows:
“In this experiment, you will see a series of scenes. For
each scene, describe what you would do in the scene. You
will have 30 s to respond.” In Experiment 4, subjects were
instructed to describe scenes as follows: “In this experiment,
you will see a series of scenes. You will have 30 s to
describe the scene out loud.”. In Experiment 5, subjects
were instructed to study a series of scenes for a later memory
test. In each experiment, the instruction was followed by
three practice trials that allowed subjects to familiarize
themselves with the task and the duration of the response
window. Subjects pressed any button on a button box to
advance throughout the task.

The task instruction was repeated before subjects began
the experimental block (Fig. 1a). Within the block, each
subject received a unique pseudo-random trial order that
prevented two scenes of the same type (e.g., living room)
from occurring consecutively. A trial proceeded as follows.
First, a five-point fixation array was displayed to check

calibration (Fig. 1b). The subject fixated the center cross
and the experimenter pressed a key to begin the trial if
the fixation was stable, otherwise the experimenter reran
the calibration procedure. The scene was then shown for a
period of 30 s (Experiments 1–4) or 12 s (Experiment 5),
during which time eye-movements were recorded (Fig. 1c).
In Experiments 1–4, audio was also recorded during scene
viewing. After the scene viewing period ended, subjects
were instructed to press a button to proceed to the next trial
(Fig. 1d). The trial procedure repeated until all trials were
complete (Experiments 1, 4, & 5 = 30 trials, Experiments 2
and 3 = 20 trials). In Experiment 5 only, subjects completed
a recognition memory test comprised of the 30 scenes
presented in the experiment and 30 image foils depicting
similar scenes.

Eye movement data were imported offline intoMATLAB
using the Visual EDF2ASC tool packaged with SR Research
DataViewer software. The first fixation was excluded from
analysis, as were saccade outliers (amplitude >20◦).

Meaning, grasp, and interact map generation

We used the same meaning and grasp maps generated in
all three experiments as described in Rehrig et al. (2020b).
We additionally mapped 15 scenes for informativeness and
graspability, and mapped all 55 scenes for interactability.
The mapping procedure was identical between the current
study and Rehrig et al. (2020b). In the interest of brevity,
we describe details of the mapping procedure only for maps
introduced in the current study.

Fig. 1 Visualization of the trial procedure for each of the 3 eyetrack-
ing experiments. First, (a) task instructions were reiterated to subjects
following the practice trials. (b) A five-point fixation array was used to
gauge calibration quality. (c) A real-world scene was shown for 30 s.

Eye-movements were recorded for the duration of the viewing period
in all experiments; audio was additionally recorded in Experiments 1–
4. (d) Subjects pressed a button to initiate the next trial. After pressing
the button, the trial procedure repeated (from b)
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Meaningmaps

Meaning maps were generated using a contextualized rating
procedure in which subjects viewed small circular patches
drawn from the scene alongside a thumbnail image showing
the full scene that included a green circle showing what
region the patch came from (Peacock et al., 2019a). Each
of the 15 scenes (1024 × 768 pixel) was decomposed into
a series of partially overlapping circular patches at fine and
coarse spatial scales (Fig. 2b&c), resulting in 4,500 unique
fine-scale patches (93 pixel diameter) and 1,620 unique
coarse-scale patches (217 pixel diameter), 6,120 patches in
total.

Raters were 97 undergraduates enrolled at UC Davis who
participated through Sona. Students received credit toward a
course requirement for participating. Subjects were at least
18 years old, had normal or corrected-to-normal vision, and
had normal color vision.

Each subject rated 300 random patches extracted from
the 15 scenes, presented alongside a small (256× 192 pixel)
image of the scene for context. Subjects were instructed
to rate how informative or recognizable each patch was
using a 6-point Likert scale (‘very low’, ‘low’, ‘somewhat
low’, ‘somewhat high’, ‘high’, ‘very high’). Prior to rating
patches, subjects were given two examples of low-meaning
and two examples of high-meaning scene patches in the
instructions to ensure that they understood the task. Scene-
patch pairs were presented in random order.

Ten catch trials, which were easy for a human completing
the task in good faith to answer correctly, were included in
each survey to serve as an attention check. Each catch trial
presented a unique catch patch to the subject to rate, which
showed a blank surface drawn from the scene (usually a
wall or ceiling; see Fig. 3). As in the test trials, catch
patches were presented alongside an image showing where
in the scene the patch was drawn from so that subjects
were not aware the trial was an attention check. If subjects
complete the task in accordance with the examples provided
in the task instructions, catch patches should be rated as
low in meaning (a value of 1 or 2 on the Likert scale). To
score catch trial performance, ratings of 2 or lower were
considered correct responses, and ratings of 3 or higher were
scored as incorrect. Ratings from 34 subjects who scored
below 80% on the catch patches were excluded. Each unique
patch was rated at least 3 times by 3 independent raters for
a total of 18,360 ratings.

Meaning maps were generated from the ratings by
averaging, smoothing, and combining the fine and coarse
scale maps from the corresponding patch ratings. The
ratings for each pixel at each scale in each scene were
averaged, producing an average fine and coarse rating
map for each scene. The fine and coarse maps were then
averaged [(fine map + coarse map)/2]. This procedure was
used for each scene. The final map was blurred using a
Gaussian filter via the MATLAB function ‘imgaussfilt’ with
a sigma of 10 (see Fig. 2e for an example meaning map).

Fig. 2 (a–d) Feature map generation schematic. (a) Real-world scene.
Raters saw the real-world scene and either a fine (inner) or coarse
(outer) green circle indicating the origin of the scene patch under con-
sideration. (b–c) Fine-scale (b) and coarse-scale (c) spatial grids used

to create scene patches. (d) Examples of scene patches that were rated
as low or high with respect to meaning, grasp, and interact. (e–g)
Examples of meaning (e), grasp (f), and interact (g) maps for the scene
shown in (a)
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Fig. 3 Examples of fine- (a) and coarse-scale (b) catch patches that
were included as attention checks

Grasp maps

Grasp maps were constructed from ratings in the same
manner as meaning maps, with the critical exception that
subjects rated each patch on how ‘graspable’ the region of
the scene shown in the patch was. In the instructions, we
defined ‘graspability’ as how easily an object depicted in
the patch could be picked up or manipulated by hand. If
a patch contained more than one object or only part of an
object, raters were instructed to use the object or entity that
occupied the most space in the patch as the basis for their
rating. The remainder of the procedure was identical to the
one used to generate meaning maps.

Raters were 83 undergraduates enrolled at UC Davis who
participated through Sona. Students received credit toward a
course requirement for participating. Subjects were at least
18 years old, had normal or corrected-to-normal vision, and
had normal color vision.

Each subject rated 300 random patches extracted from
the 15 scenes, presented alongside a scene thumbnail for
context. Subjects were instructed to rate how graspable
each patch was using a 6-point Likert scale (‘very low’,

‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’, ‘very
high’). Prior to rating patches, subjects were given two
examples each of low-graspability and high-graspability
scene patches in the instructions to ensure that they
understood the task. Scene-patch pair presentation order
was random. Ratings from 20 subjects that scored below
80% on the catch patches were excluded. Each unique patch
was rated at least 3 times by 3 independent raters for a total
of 18,360 ratings.

Grasp maps were generated in the same manner as
the meaning maps. Ratings were averaged, smoothed, and
combined across scales. The ratings for each pixel at each
scale in each scene were averaged, producing an average
fine and coarse rating map for each scene. This procedure
was used for each scene. An example grasp map can be seen
in Fig. 2f.

Interact maps

Interact maps were constructed in the same manner as
meaning and grasp maps, except subjects were asked to rate
the region of the scene that was visible in each patch based
on how ‘interactable’ it was. We defined ‘interactability’ as
the extent to which the subject viewed what was shown as
an object with which a human might interact. As in the grasp
map generation procedure, subjects were again instructed to
rate the object that occupied the majority of the patch.

Each of the 55 scenes (1024 × 768 pixel) was
decomposed into a series of partially overlapping circular
patches at fine and coarse spatial scales (Fig. 2b&c),
resulting in 16,500 unique fine-scale patches (93 pixel
diameter) and 5,940 unique coarse-scale patches (217 pixel
diameter), 22,440 patches in total.

Raters were 328 undergraduates enrolled at UC Davis
who participated through Sona.1 Students received credit
toward a course requirement for participating. Subjects were
at least 18 years old, had normal or corrected-to-normal
vision, and had normal color vision.

Each subject rated 300 random patches extracted from
the 55 scenes, presented alongside a scene thumbnail for
context. Subjects were instructed to rate how interactable
each patch was using a 6-point Likert scale (‘very
low’, ‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’,
‘very high’). Prior to rating patches, subjects were
given two examples each of low-interactability and high-
interactability scene patches in the instructions to ensure
that they understood the task. Scene-patch pair presentation
order was random. Ratings from 103 subjects that scored
below 80% on the catch patches were excluded. Each unique

1More raters were used because we had to generate interact maps for
55 scenes, as opposed to only 15 scenes for the other map types.
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patch was rated at least 3 times by 3 independent raters (at
least 67,320 ratings in total).

Interact maps were generated in the same manner as the
meaning and grasp maps. Ratings were averaged, smoothed,
and combined across scales. This procedure was used for
each scene. An example interact map is shown in Fig. 2g.

Overall, the resulting meaning, grasp, and interact
maps were correlated with one another; the correlation
was particularly high for grasp and interact maps in
Experiment 3 (MR2 = 0.72, SDR2 = 0.10)(Table 1).

Analysis

Following Nuthmann et al. (2017), we examined which
features influenced visual attention by comparing the
feature map values at locations in the scene that were
fixated to those for locations that were not, operating on the
assumption that differences between regions of the scene
that were and were not fixated speak to what information
is prioritized for attention. Rather than dividing the scene
into a grid (as Nuthmann et al., 2017 did), we elected to use
the procedure developed by Hayes and Henderson (2021)
to measure meaning, grasp, and interact map values in a
window around each location, and compared the values for
fixated locations to those of sampled locations in the scene
that were not fixated.

Specifically, we conducted a logistic mixed-effects
regression analysis in which the dependent variable was
whether subjects fixated a location (1) or not (0). The
dependent variable was defined as follows. For each subject
and each trial, the x,y coordinates corresponding to the
subject’s fixations were assigned a value of 1 (fixated).
A number of locations that were not fixated equal to the
number of fixated locations were then randomly sampled
from all possible coordinates in the 1024× 768 image using
the ‘sample’ function from the ‘random’ module in Python
3. Locations that the subject fixated during that trial, or

Table 1 Correlations (R2) between feature maps

Experiment Feature maps Correlation (R2)

M SD

1,4,&5 Meaning × Grasp 0.538 0.185

1,4,&5 Meaning × Interact 0.451 0.209

1,4,&5 Grasp × Interact 0.499 0.22

2 Meaning × Grasp 0.526 0.224

2 Meaning × Interact 0.496 0.222

2 Grasp × Interact 0.562 0.195

3 Meaning × Grasp 0.471 0.175

3 Meaning × Interact 0.469 0.182

3 Grasp × Interact 0.715 0.097

locations that fell within a 1.5◦ visual angle (56 pixel) radius
around the fixated location, were excluded from the sample
space. The randomly sampled coordinates were assigned a
value of 0 (not fixated).

We accounted for center bias in our model (Tatler, 2007;
Hayes & Henderson, 2019a) using the center proximity
measure developed by Hayes and Henderson (2021). We
calculated the inverted Euclidean distance between the
center of the scene and each other pixel in the image and
stored the value for each pixel in a 1024 × 768 matrix.
The Euclidean distance was z-scored and inverted for ease
of interpretation such that higher values indicate closer
proximity to the center of the scene.

For each x,y coordinate pair, we then computed the mean
feature and center proximity map values corresponding to
a 3◦ visual angle (113 pixel) diameter window around the
coordinate. We defined a mask for the region around the fix-
ation using a 56 pixel radius. The mask was then used to
extract an array of map values for the meaning, grasp, inter-
act, and center proximity maps, and the mean of each array
was stored as the average feature map values corresponding
to the x,y coordinate under consideration (Fig. 4).

A logistic mixed-effects model was constructed for each
experiment’s data using the ‘glmer’ function of the ‘lme4’
package in R (Bates, Mächler, Bolker, & Walker, 2015; R
Core Team, 2021). Each model was maximally specified to
include fixed effects of center proximity, meaning, grasp,
and interact, as well as interactions between each. Random
intercepts and random slopes corresponding to fixed effects
and their interactions were included in both random effect
structures. To facilitate model convergence, all predictors
were centered and scaled using the ‘scale’ function in
base R prior to analysis, and random slopes and intercepts
were uncorrelated. All models used the default optimizer
(bobyqa). Random effects were included for subjects and
items (scenes). Because the data sets in use are large, the
maximum number of model iterations was increased to
100,000.

Results

Experiment 1

In Experiment 1, 30 subjects were asked to describe actions
the average person could carry out in each of 30 real-world
scenes. We predicted that object affordances as captured
by interact and grasp maps would predict regions in the
scene that were selected for attention as subjects described
possible actions, because objects that can be interacted with
are task-relevant.

Locations in the scene that were fixated were more
informative on average (M = 3.05, SD = 0.76) than
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Fig. 4 Visualization of analysis approach. (a) Real-world scene. (b)
Scene overlaid with fixated (yellow) and randomly sampled (cyan)
location coordinates. Circles illustrate the mask radius used to compute

average feature map values around each fixated (cyan) or sampled (yel-
low) coordinate. (c) Center proximity map. (d–f) Meaning (d), grasp
(e), and interact (f) maps for the scene shown in (a)

randomly sampled locations (M = 2.62, SD = 0.77)
(Fig. 5a). Locations that were fixated also had higher grasp
map values on average (M = 3.26, SD = 0.86) than
randomly sampled locations that were not (M = 2.91,
SD = 0.88). Interact map values were also higher on
average for locations that were fixated (M = 3.16, SD =
0.89) than those that were not fixated (M = 2.74, SD =
0.90). Consistent with center bias, fixated locations had
higher center proximity on average (M = 0.60, SD =
0.95) than randomly sampled locations that were not fixated
(M = −0.28, SD = 0.89).

Consistent with the hypothesis that object affordances
broadly influence visual attention, there was a simple main
effect of interact such that subjects were more likely to
fixate locations that had higher interact map values (β =
0.48, z = 4.40, p < .0001) (Table 2). Counter to our
predictions, there was no simple main effect of meaning
(β = 0.10, z = 1.14, p = 0.26). There was a reliable
interaction between grasp and interact such that locations
in the scene that had low interact map values were more
likely to be fixated if they had high grasp map values (β =
−0.17, z = −2.29, p = .02). The model revealed a simple
main effect of center proximity such that subjects were
more likely to fixate locations near the center of the image
(β = 0.82, z = 13.67, p < .0001), consistent with center
bias (Tatler, 2007). There was a reliable interaction between

center proximity and meaning such that locations further
from the screen center were more likely to be fixated if they
had higher meaning map values (β = −0.15, z = −2.88,
p = .004), and an opposite reliable interaction between
center proximity and grasp such that locations further from
the center of the scene were less likely to be fixated if
they had high grasp map values (β = 0.17, z = 2.69,
p = .007) (Fig. 6). Finally, there was a marginal interaction
between interact and center proximity such that regions
of the scene in the periphery were marginally more likely
to be fixated if they had high interact map values (β =
−0.13, z = −1.91, p = .06). No other predictors were
significant.

In sum, interact map values predicted fixated locations
in the scene better than meaning or grasp, which were
only influential in interactions which revealed that observers
deviated from the center of the image to pursue locations
that were more informative or interactable, but not highly
graspable. As expected, fixated locations were closer to the
center of the image, reflecting center bias.

Experiment 2

In Experiment 2, we again asked 40 subjects to describe
actions the average person could carry out in each of 20
real-world scenes, and once again we anticipated object
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Fig. 5 Hybrid violin and box plots. Data for each of the three exper-
iments is shown on separate rows. In each row, the left panel shows
center proximity (green) both for sampled coordinates that were not
fixated and for fixated locations (x-axis). The right panel shows
the average grasp map values around the image coordinate (yellow-
orange), average interact map values (violet), and average meaning
map values (red), shown separately for locations that were randomly

sampled and fixated locations (x-axis). Center proximity values and
map values reflect z-values and Likert ratings (1–6), respectively.
White points superimposed over the violins indicate the grand mean.
On the box plots to the left of each violin, black horizontal lines corre-
spond to the median, colored boxes indicate the 25% and 75% quartile
boundaries, and black vertical lines show ± 1.5 IQR (the interquartile
range)

Table 2 Experiment 1 logistic mixed-effects model output

Predictors Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.004 0.09 0.05 0.96 0.10 0.44
Meaning 0.10 0.09 1.14 0.26 0.16 0.44
Grasp −0.07 0.09 −0.76 0.45 0.17 0.43
Interact 0.48 0.11 4.40 <.0001� 0.29 0.51
Meaning:Grasp −0.03 0.09 −0.37 0.71 0.15 0.43
Meaning:Interact 0.08 0.09 0.86 0.39 0.19 0.45
Grasp:Interact −0.17 0.08 −2.29 0.02� 0.13 0.37
Meaning:Grasp:Interact −0.05 0.05 −0.98 0.32 0.06 0.22
Center Proximity 0.82 0.06 13.67 <.0001� 0.22 0.21
Center Proximity:Meaning −0.15 0.05 −2.88 0.004� 0.09 0.24
Center Proximity:Grasp 0.17 0.06 2.69 0.007� 0.11 0.28
Center Proximity:Interact −0.13 0.07 −1.91 0.06† 0.12 0.31
Center Proximity:Meaning:Interact −0.06 0.05 −1.20 0.23 0.06 0.21
Center Proximity:Grasp:Interact −0.02 0.07 −0.24 0.81 0.11 0.30
Center Proximity:Meaning:Grasp 0.09 0.06 1.57 0.12 0.07 0.28
Center Proximity:Meaning:Grasp:Interact 0.008 0.03 0.23 0.82 0.05 0.15

�Denotes a significant predictor or interaction
†Denotes a marginal predictor or interaction
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Fig. 6 Estimated fixation probability (y-axis) for marginal and sig-
nificant interactions for z-scored predictors in Experiment 1. Shaded
regions indicate 95% confidence intervals. The top row shows the
interactions of grasp (x-axis) with interact (lines) and meaning (x-axis)

with center proximity (lines). The bottom row shows interactions of
grasp (x-axis) and center proximity (lines) and interact (x-axis) and
center proximity (lines)

affordances (as captured by grasp and interact maps) would
predict the regions that were fixated in the scene.

As in Experiment 1, fixated locations had higher average
meaning map values (M = 2.87, SD = 0.70) than
randomly sampled locations that were not fixated (M =
2.51, SD = 0.73), and higher grasp map values (M = 3.52,
SD = 0.79) than randomly sampled locations (M = 3.17,
SD = 0.84). Consistent with our hypothesis and the results
of Experiment 1, fixated locations in the scene had higher
interact map values (M = 3.23, SD = 0.81), than those that
were not fixated (M = 2.86, SD = 0.83). Finally, fixated
locations were closer to the center of the image on average
(M = 0.54, SD = 0.94) than locations that were sampled
from parts of the scene that were not fixated (M = −0.27,
SD = 0.90).

Consistent with Experiment 1, there was a simple main
effect of interact such that subjects were more likely to fixate
locations that had higher interact map values (β = 0.38, z =
2.67, p = 0.008) (Table 3). There was a reliable interaction
between meaning and grasp such that locations with high
meaning values were more likely to be fixated if they also
had high grasp map values (β = 0.23, z = 2.63, p = 0.009)

(Fig. 7). The model revealed a simple main effect of center
proximity reflecting center bias (β = 1.15, z = 8.47,
p < .0001). There was a marginal interaction between
meaning and center proximity such that locations further
from the center of the image were marginally more likely to
be fixated if they were informative (β = −0.19, z = −1.80,
p = 0.07), and a marginal three-way interaction between
grasp, interact, and center proximity such that regions close
to the center of the image were marginally more likely to be
fixated when they had low interact map values if they had
high grasp map values (β = −0.21, z = −1.88, p = 0.06).
No other predictors were significant.

Consistent with Experiment 1, interact map values
predicted fixated locations in the scene, and meaning and
grasp did not predict fixated locations well independently,
though each had some influence in interactions. There was
a significant effect of center bias such that fixated locations
were closer to the center of the image, and there was a
marginal interaction between center proximity, interact, and
grasp such that regions in the center of the image that were
low in interactability were more likely to be fixated if were
high in graspability.
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Table 3 Experiment 2 logistic mixed-effects model output

Predictors Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.11 0.10 1.02 0.31 0.52 0.28
Meaning −0.007 0.14 −0.05 0.96 0.24 0.60
Grasp 0.10 0.10 0.98 0.33 0.17 0.42
Interact 0.38 0.14 2.67 0.008� 0.28 0.59
Meaning:Grasp 0.23 0.09 2.63 0.009� 0.20 0.41
Meaning:Interact 0.11 0.13 0.84 0.40 0.27 0.52
Grasp:Interact −0.18 0.11 −1.58 0.11 0.19 0.47
Meaning:Grasp:Interact −0.07 0.05 −1.23 0.22 0.10 0.22
Center Proximity 1.15 0.14 8.47 <.0001� 0.73 0.31
Center Proximity:Meaning −0.19 0.11 −1.80 0.07† 0.17 0.45
Center Proximity:Grasp 0.0009 0.11 0.008 0.99 0.18 0.43
Center Proximity:Interact −0.003 0.11 −0.03 0.97 0.16 0.45
Center Proximity:Meaning:Grasp 0.09 0.11 0.83 0.41 0.18 0.46
Center Proximity:Meaning:Interact 0.02 0.08 0.28 0.78 0.21 0.28
Center Proximity:Grasp:Interact −0.21 0.11 −1.88 0.06† 0.24 0.45
Center Proximity:Meaning:Grasp:Interact 0.002 0.04 0.04 0.97 0.14 0.16

�Denotes a significant predictor or interaction
†Denotes a marginal predictor or interaction

Experiment 3

In Experiment 3, we asked 40 subjects to describe actions
that they personally would carry out in each of 20 real-
world scenes, which depicted reachable spaces (Josephs
& Konkle, 2020). We anticipated object affordances (as
captured by grasp and interact maps) might predict the

regions that were fixated in the scene more strongly than
in the first two experiments because the task instruction
was personalized and the scenes depicted spaces that afford
object interactions particularly well.

Fixated locations again had higher average meaning map
values (M = 2.90, SD = 0.71) than sampled locations did
(M = 2.51, SD = 0.75). Grasp map values were also higher

Fig. 7 Estimated fixation probability (y-axis) for marginal and sig-
nificant interactions for z-scored predictors in Experiment 2. Shaded
regions indicate 95% confidence intervals. The top row shows 2-way
interactions: meaning (x-axis) with center proximity (lines) and grasp

(x-axis) with meaning (lines). The bottom row shows the 3-way inter-
action between grasp (x-axis), interact (lines), and center proximity
(facets)
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on average for fixated locations (M = 3.40, SD = 0.77)
than sampled locations (M = 2.93, SD = 0.88). Finally,
fixated locations in the scene again had higher interact map
values (M = 3.53, SD = 0.74), than randomly sampled
locations that were not fixated did (M = 3.07, SD = 0.85).
Once again, fixated locations were closer to the center of the
image (M = 0.57, SD = 0.91) on average than randomly
sampled locations were (M = −0.31, SD = 0.90).

Consistent with the previous two experiments, there was
a simple main effect of interact such that subjects were
more likely to fixate locations that had higher interact map
values (β = 0.22, z = 2.53, p = 0.01) (Table 4).
There was a marginal effect of grasp such that regions were
marginally more likely to be fixated when they had higher
grasp map values (β = 0.15, z = 1.67, p = 0.095). The
model revealed a simple main effect of center proximity
reflecting center bias (β = 1.02, z = 14.52, p < .0001).
There was a reliable interaction between center proximity,
meaning, and interact such that locations further from the
center of the image were more likely to be fixated when both
interact and meaning map values were high (β = −0.15,
z = −2.36, p = 0.02), and a reliable interaction between
center proximity, grasp, and interact such that locations in
the periphery with low interact map values were more likely
to be fixated if they had high grasp map values (Fig. 8). No
other predictors were significant.

In Experiment 3, interact map values again predicted
fixated locations in the scene better than meaning or grasp,
though grasp was a marginal independent predictor. There
was again a reliable center bias on fixated locations, and
there were reliable interactions between center proximity,
meaning, and interact map values and center proximity,
grasp, and interact map values.

Experiment 4

To determine whether the finding that interactability
predicts fixated locations generalizes to a description task
for which object interactions are less task-relevant, we
applied the analysis performed on the action description
tasks (Experiments 1–3) to fixation data from an open-
ended description task (Henderson et al., 2018) that used the
same 30 scenes presented in Experiment 1.

If object interactions guide attention in scenes even when
actions are less task-relevant, we anticipate that the analysis
will show a strong predictive relationship between interact
map values and fixated locations; however, if interact map
values predicted well in Experiments 1–3 because object
interactions were highly task relevant—but not generally
more important than general informativeness for visual
attention—we expect meaning map values to predict fixated
locations better than interact map values.

Table 4 Experiment 3 logistic mixed-effects model output

Predictors Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.04 0.04 1.00 0.32 0.11 0.13

Meaning 0.01 0.07 0.16 0.88 0.25 0.27

Grasp 0.15 0.09 1.67 0.095† 0.22 0.35

Interact 0.22 0.09 2.53 0.01� 0.19 0.35

Meaning:Grasp 0.12 0.11 1.16 0.25 0.12 0.45

Meaning:Interact 0.04 0.08 0.44 0.66 0.11 0.33

Grasp:Interact −0.09 0.10 −0.89 0.37 0.12 0.44

Meaning:Grasp:Interact −0.03 0.03 −1.11 0.27 0.08 0.10

Center Proximity 1.02 0.07 14.52 <.0001� 0.34 0.19

Center Proximity:Meaning −0.05 0.06 −0.93 0.35 0.11 0.22

Center Proximity:Grasp −0.11 0.08 −1.36 0.18 0.10 0.33

Center Proximity:Interact 0.002 0.08 0.03 0.98 0.11 0.35

Center Proximity:Meaning:Grasp 0.04 0.07 0.58 0.56 0.16 0.23

Center Proximity:Meaning:Interact −0.15 0.06 −2.36 0.02� 0.16 0.22

Center Proximity:Grasp:Interact 0.12 0.06 1.96 0.049� 0.12 0.23

Center Proximity:Meaning:Grasp:Interact 0.02 0.03 0.64 0.52 0.06 0.11

�Denotes a significant predictor or interaction
†Denotes a marginal predictor or interaction
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Fig. 8 Estimated fixation probability (y-axis) for significant 3-way
interaction between z-scored predictors in Experiment 3: in the top
row, grasp (x-axis), interact (lines), and center proximity (facets); in

the bottom row, meaning (x-axis), interact (lines), and center proximity
(facets). Shaded regions indicate 95% confidence intervals

The analysis was identical to that of Experiments 1–
3, with the following exception: the maximal model
produced singular fit, therefore the random slope that
accounted for negligible variance (an interaction between
center proximity, meaning, and grasp in the subject random
effect) was pruned from the model (following Barr, Levy,
Scheepers, & Tily 2013). The resulting model converged
without error.

When subjects described scenes however they liked,
the average meaning map values were higher for fixated
locations (M = 3.30, SD = 0.68) than sampled locations
(M = 2.51, SD = 0.73) (Fig. 9). Grasp map values were
also higher on average for fixated (M = 3.48, SD = 0.83)
as opposed to sampled locations (M = 2.81, SD = 0.85).
Consistent with the action description experiments, fixated
locations in the scene also had higher interact map values

Fig. 9 Hybrid violin and box plots for predictors Experiment 4. The
left panel shows center proximity (green) both for sampled coordi-
nates that were not fixated and for fixated locations (x-axis). The right
panel shows the average grasp map values around the image coordi-
nate (yellow-orange), average interact map values (violet), and average
meaning map values (red), shown separately for locations that were
randomly sampled and fixated locations (x-axis). Center proximity

values and map values reflect z-values and Likert ratings (1–6), respec-
tively. White points superimposed over the violins indicate the grand
mean. On the box plots to the left of each violin, black horizontal
lines correspond to the median, colored boxes indicate the 25% and
75% quartile boundaries, and black vertical lines show ± 1.5 IQR (the
interquartile range)
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(M = 3.35, SD = 0.88) than randomly sampled locations
that were not fixated (M = 2.66, SD = 0.86). Finally,
fixated locations were, on average, closer to the center of
the image (M = 0.53, SD = 0.93) than randomly sampled
locations were (M = −0.29, SD = 0.90).

As in the action description experiments, in the open-
ended scene description task there was a simple main effect
of interact such that subjects were more likely to fixate
locations that had higher interact map values (β = 0.41, z =
2.66, p = 0.008) (Table 5). Counter to the action description
tasks, there was a simple main effect of meaning such that
subjects were more likely to fixate locations with higher
meaning map values (β = 0.90, z = 7.70, p < .0001). As
expected, the model revealed a simple main effect of center
proximity reflecting center bias (β = 0.44, z = 4.08, p <

.0001). There was a marginal interaction between center
proximity, meaning, and grasp such that locations near the
center of the scene were marginally more likely to be fixated
if they had high grasp and meaning map values (β = .21,
z = 1.93, p = 0.05), and there was a reliable 4-way
interaction between center proximity, meaning, grasp, and
interact such that locations in the periphery of the scene that
had high meaning map values, but lower grasp and interact
map values, were more likely to be fixated (β = −0.20,
z = −2.63, p = 0.009) (Fig. 10). No other predictors were
significant.

In Experiment 4, both interact and meaning map values
predicted fixated locations in the scene, whereas grasp map
values did not, and there was again a reliable center bias on
fixated locations.

Experiment 5

To determine whether interactability predicts fixated loca-
tions well in a task that does not encourage the viewer to
think about objects in the scenes and how they would inter-
act with those objects, we applied the analysis performed
in Experiments 1–4 to fixation data from a scene memo-
rization task (Rehrig et al., 2020a) that used the same 30
scenes presented in Experiments 1 and 4. In Experiment 5,
30 subjects memorized 30 real-world scenes for a period of
12 s each in preparation for a later recognition memory task.
Following Rehrig et al. (2020a), we expect general infor-
mativeness to predict fixated locations well. If the strong
predictive relationship between object interactability and
attention observed in Experiments 1–4 generalizes beyond
language tasks, we additionally expect interact map values
to predict fixated locations.

When subjects studied scenes for a later memorization
task, the average meaning map values were higher for
fixated locations (M = 3.34, SD = 0.69) than for randomly
sampled locations that had not been fixated (M = 2.60,

Table 5 Experiment 4 logistic mixed-effects model output

Predictors Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept 0.05 0.14 0.33 0.74 0.08 0.78

Meaning 0.90 0.12 7.70 < .0001� 0.19 0.59

Grasp 0.25 0.15 1.64 0.10 0.17 0.80

Interact 0.41 0.16 2.66 0.008� 0.39 0.74

Meaning:Grasp −0.07 0.12 −0.58 0.56 0.14 0.61

Meaning:Interact 0.07 0.13 0.54 0.59 0.17 0.65

Grasp:Interact −0.01 0.12 −0.09 0.93 0.11 0.60

Meaning:Grasp:Interact −0.05 0.09 −0.50 0.62 0.08 0.46

Center Proximity 0.44 0.11 4.08 < .0001� 0.28 0.50

Center Proximity:Meaning −0.18 0.12 −1.52 0.13 0.14 0.58

Center Proximity:Grasp 0.19 0.13 1.44 0.15 0.07 0.68

Center Proximity:Interact −0.04 0.12 −0.31 0.75 0.08 0.62

Center Proximity:Meaning:Grasp 0.21 0.11 1.93 0.05† – 0.54

Center Proximity:Meaning:Interact −0.006 0.12 −0.05 0.96 0.04 0.64

Center Proximity:Grasp:Interact 0.07 0.09 0.76 0.45 0.07 0.44

Center Proximity:Meaning:Grasp:Interact −0.20 0.08 −1.63 0.009� 0.07 0.37

�Denotes a significant predictor or interaction
†Denotes a marginal predictor or interaction
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Fig. 10 Estimated fixation probability (y-axis) for interactions
between z-scored predictors in Experiment 4. The top figure illus-
trates a marginal three-way interaction between meaning (x-axis),
grasp (lines) and center proximity (columns). The bottom figure

visualizes a reliable four-way interaction between meaning (x-axis),
grasp (lines), interact (rows) and center proximity (columns). Shaded
regions indicate 95% confidence intervals

Fig. 11 Hybrid violin and box plots for predictors Experiment 5. The
left panel shows center proximity (green) both for sampled coordi-
nates that were not fixated and for fixated locations (x-axis). The right
panel shows the average grasp map values around the image coordi-
nate (yellow-orange), average interact map values (violet), and average
meaning map values (red), shown separately for locations that were
randomly sampled and fixated locations (x-axis). Center proximity

values and map values reflect z-values and Likert ratings (1–6), respec-
tively. White points superimposed over the violins indicate the grand
mean. On the box plots to the left of each violin, black horizontal
lines correspond to the median, colored boxes indicate the 25% and
75% quartile boundaries, and black vertical lines show ± 1.5 IQR (the
interquartile range)
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Table 6 Experiment 5 logistic mixed-effects model output

Predictors Fixed effects Random effects (SD)

β SE z p Subject Scene

Intercept −0.24 0.12 −1.97 0.05 0.13 0.62

Meaning 1.49 0.13 11.70 <.0001� 0.09 0.64

Grasp 0.12 0.16 0.75 0.46 0.05 0.80

Interact −0.15 0.17 −0.92 0.36 0.12 0.87

Meaning:Grasp −0.23 0.11 −2.05 0.04� 0.06 0.53

Meaning:Interact 0.12 0.14 0.88 0.38 0.05 0.71

Grasp:Interact 0.14 0.15 0.94 0.35 0.03 0.75

Meaning:Grasp:Interact 0.04 0.08 0.54 0.59 0.05 0.37

Center Proximity 0.25 0.11 2.23 0.03� 0.36 0.46

Center Proximity:Meaning −0.06 0.13 −0.46 0.65 0.09 0.67

Center Proximity:Grasp 0.01 0.13 0.08 0.94 0.03 0.64

Center Proximity:Interact 0.07 0.13 0.56 0.57 0.08 0.64

Center Proximity:Meaning:Grasp −0.16 0.11 −1.50 0.13 0.05 0.52

Center Proximity:Meaning:Interact 0.11 0.13 0.82 0.41 0.08 0.67

Center Proximity:Grasp:Interact 0.02 0.09 0.22 0.82 0.05 0.42

Center Proximity:Meaning:Grasp:Interact −0.06 0.08 −0.72 0.47 0.04 0.40

�Denotes a significant predictor or interaction

SD = 0.75) (Fig. 11). Grasp map values were also higher
on average for fixated (M = 3.50, SD = 0.83) as opposed
to sampled locations (M = 2.92, SD = 0.87). Consistent
with the scene description experiments, fixated locations in
the scene also had higher interact map values (M = 3.31,
SD = 0.91) than randomly sampled locations that were not
fixated (M = 2.78, SD = 0.89). Finally, fixated locations
were, on average, closer to the center of the image (M =
0.49, SD = 1.02) than randomly sampled locations were
(M = −0.14, SD = 0.94).

Unlike Experiments 1–3, but consistent with Experi-
ment 4, in the scene memorization task there was a simple
main effect of meaning: Subjects were more likely to fixate
locations that had higher meaning map values (β = 1.49,
z = 11.70, p < .0001) (Table 6). There was a reliable inter-
action between meaning and grasp such that locations that
had low meaning map values were more likely to be fixated
when the corresponding grasp map values were high (β =
−0.23, z = −2.05, p = 0.04) (Fig. 12). Consistent with
all other experiments, the model revealed a simple main
effect of center proximity reflecting center bias (β = 0.25,
z = 2.23, p < 0.03). No other predictors were significant.

In stark contrast to the previous experiments, of the
three feature maps used, meaning map values were the
only reliable independent predictor of fixated locations
in Experiment 5, though there was a reliable interaction
between meaning and grasp map values. Consistent with all
of the previous experiments, there was a reliable effect of
center bias on fixated locations.

General discussion

In four data sets used in the current analysis, fixated
locations were predicted by interact map values such that
locations that were highly interactable were more likely to
be fixated, consistent with the prediction that interactability
could rival general informativeness in predicting overt
visual attention, which follows from the hypothesis that
object affordances influence attention in scenes. However,
interact map values predicted fixated locations only for
description tasks (Experiments 1–4), but failed to predict
fixated locations when the task did not have an explicit

Fig. 12 Estimated fixation probability (y-axis) for significant interac-
tion between z-scored predictors in Experiment 5: grasp (x-axis) and
meaning (lines). Shaded regions indicate 95% confidence intervals
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language component (Experiment 5). When the task was
not to describe the scene (scene memorization), only
meaning map values predicted what locations in the
scene were fixated. Partially consistent with Rehrig et al.
(2020b) and with our predictions, higher grasp map
values marginally predicted fixated locations only when
scenes depicted reachable spaces (Experiment 3), and
otherwise grasp contributed to reliable interactions in all
experiments. Counter to our predictions, meaning map
values were not a significant predictor as a simple main
effect in any of the action description experiments; however,
general informativeness was influential in tasks for which
object interactions were less task-relevant (Experiments
4 & 5).

Our findings for Experiments 1–4 suggest that object
affordances broadly defined (as captured by interact maps)
predict locations prioritized for visual attention in scenes
during description tasks; however, in a task that did
not encourage the viewer to think about objects in the
scene or their interactions (Experiment 5), affordances
as operationalized in the current study did not predict
fixated locations. The aforementioned findings are difficult
to reconcile with those in the literature that show an
influence of object affordances on attention in visual search
tasks (Castelhano & Witherspoon, 2016; Gomez et al.,
2018; Gomez & Snow, 2017). One possible explanation
put forth by Rehrig et al. (2020b) is that prior work
demonstrating a role of object affordances on attention
in more traditional visual attention experiments (such
as visual search; Castelhano and Witherspoon, 2016;
Gomez et al., 2018; Gomez & Snow, 2017) may have
been driven by other object-related information (such as
recognizabilty or informativeness) that was better captured
by informativeness than general affordances in the current
study. However, it might also be the case that the 2-
dimensional nature of the task used in the current study was
unable to speak to the role of object affordances in guiding
attention to physically present objects as demonstrated
by Gomez et al. (2018). We leave the challenging task
of investigating whether attentional guidance is better
explained by general informativeness or object affordances
for 3-dimensional or physically present objects to future
work.

The influence of affordances on attention in the descrip-
tion tasks (Experiments 1–4) is consistent with litera-
ture implicating object affordances in language processing
broadly (Borghi, 2012; Borghi & Riggio, 2009; Feven-
Parsons & Goslin, 2018; Glenberg et al., 2009; Glen-
berg & Kaschak, 2002; Grafton, Fadiga, Arbib, & Rizzo-
latti, 1997; Harpaintner, Sim, Trumpp, Ulrich, & Kiefer,
2020; Kaschak & Glenberg, 2000; Martin, 2007). Neu-
roimaging studies have revealed motor activation associated

with object-related cognitive processes (Martin, 2007),
and specifically with language processes such as silently
naming an object (Grafton et al., 1997), or making lexical
decisions about action words (Harpaintner et al., 2020). A
priming study showed an object’s semantics are not prior-
itized over its affordances when processing object names
(Feven-Parsons & Goslin, 2018). Evidence from language
comprehension suggests that we interpret sentences through
human action (Glenberg et al., 2009; Glenberg & Kaschak,
2002; Kaschak & Glenberg, 2000): for example, an object’s
affordances can facilitate detection of the object’s name in
sentences (Borghi, 2012; Borghi & Riggio, 2009). Studies
of language-mediated visual attention suggest that, while
listening to speech presented concurrent with scene view-
ing, observers attend to objects in a scene with affordances
that are compatible with those of the events or objects men-
tioned (Altmann & Kamide, 1999; Chambers, Tanenhaus,
Eberhard, Filip, & Carlson, 2002; Chambers, Tanenhaus, &
Magnuson, 2004; Kako & Trueswell, 2000; Kamide, Alt-
mann, & Haywood, 2003), particularly when object affor-
dances are task-relevant (Salverda, Brown, & Tanenhaus,
2011). Altmann and Kamide (2007) argued that processes
of language comprehension activate conceptual represen-
tations associated with a referent (such as an object or
event), and, in turn, visual attention seeks out objects in
the scene that have compatible object affordances. The
results of the current study are compatible with the idea
that the mediating effects of language on visual attention
described by Altmann and Kamide (2007) may extend to
language production tasks, and to the allocation of atten-
tion in real-world scenes. However, the current study cannot
differentiate between the possibility that object affordances
influenced attention in Experiments 1–4 because description
tasks engage the language system, or because description
tasks encourage the observer to think about objects in the
scene and the interactions they afford more carefully than
other tasks would. Future work will be needed to determine
which of the two possibilities best explains the observed
relationship between object affordances and visual atten-
tion.

It is worth noting that Experiments 1, 4, & 5 used
the same stimuli and maps, and tested the same num-
ber of subjects, yet the influence of the types of semantic
information we quantified in the current study (informa-
tiveness, graspability, and interactability) on attention dif-
fered in each. We attribute the difference to the observer’s
task, which changed across the three experiments.
When object affordances were most task relevant—as
observers described the potential actions available to them
in a scene—interactability predicted attended locations
better than meaning or graspability (Experiment 1),
but when observers simply described what they saw,
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informativeness and interactability both guided attention
(Experiment 4). Finally, when object affordances were least
task-relevant, informativeness influenced visual attention and
interactability did not (Experiment 5). The difference in find-
ings dependent on the task instruction supports the idea that
object affordances exert a greater influence on cognition
when they are task-relevant (Ostarek & Huettig, 2019).

In the previous analysis using much of the same data,
grasping affordances only explained variation in fixation
density effectively when the scenes depicted reachable
spaces, which led us to conclude that affordances guide
attention for stimuli that are especially conducive to acting
on the environment (Rehrig et al., 2020b). In contrast, the
present analysis revealed that object affordances broadly,
as captured by interact maps, predicted fixated locations
during the same action description experiments even in
scenes that were less clearly conducive to interaction,
including the scenes for which graspability did not explain
attention well in the prior study. Consistent with Rehrig
et al. (2020b), grasping affordances—as captured by grasp
maps—marginally predicted fixated locations when scenes
depicted reachable spaces. Through comparing the results
of the current analysis with those reported in Rehrig
et al. (2020b), we conclude that grasping affordances
influence attention only when objects would be within
reach (conducive to grasping), despite the fact that possible
grasping interactions are task-relevant in all scenes, but
object affordances more broadly exert a strong influence
on attention when the possible actions in the scene are
relevant to the speaker’s goals. These findings suggest that
the possible grasping actions in an environment are only
relevant to observers when the object is within reach and
thus would be readily acted upon; however, an alternative
explanation is simply that any highly constrained, specific
affordance—be it grasping, lifting, sitting, etc.—would
underperform in our model relative to a representation that
captures a wide range of possible interactions with the
environment. It is further possible that graspability would
perform as well as, or perhaps better, than interactability
in a task for which grasping interactions specifically were
highly task-relevant—for example, if observers were asked
to study a scene for the purpose of planning to sanitize
objects in the scene, or to pack the items in the room for
a move. We leave investigation of the latter possibility to
future work.

Our findings further illustrate the flexibility and utility
of the mapping procedure, originally developed to construct
meaning maps, in capturing different types of semantic
information in scenes (Henderson, Hayes, Peacock, &
Rehrig, 2021). The meaning, grasp, and interact maps used
in the current study are all primarily derived from stored
semantic representations of objects and scene categories that

comprise semantic knowledge for scenes. Although each
map taps semantic representations in a similar way, and the
maps are correlated with one another, the fact that each
differed in their ability to predict fixated locations across
tasks indicates that the different maps tapped dissociable
forms of semantic information, which suggests raters in
the crowd-sourcing task were sensitive to variation in the
instructions and followed them diligently.

Conclusion

The current analysis investigated what type of semantic
information guides attention in a scene. We conducted a
novel analysis on existing data sets (Henderson et al., 2018;
Rehrig et al., 2020a, b) and determined which of three forms
of semantic information best accounted for overt visual
attention: (1) general informativeness, the informativeness
or recognizability of scene regions, (2) graspability, the
degree to which what is shown in a region can be grasped,
and (3) interactability, the degree to which a scene region
depicts objects that can be interacted with in any way. Of
the forms of semantic information tested, interactability was
the strongest predictor of locations speakers fixated across
three action description experiments, suggesting that the
actions objects in a scene afford exert a strong influence
on attention during action descriptions, moreso than what
the results originally reported in Rehrig et al. (2020b)
suggested. When speakers described scenes however they
liked (Henderson et al., 2018), both interactability and
informativeness predicted fixated locations; however, only
informativeness predicted fixated locations when the task
had no explicit language component (scene memorization;
Rehrig et al., 2020a). Consistent with Altmann and Kamide
(2007), the results suggest that object affordances guide
attention when the language system is engaged—to a greater
degree than informativeness does, at least when affordances
are especially task-relevant (Experiments 1–3; consistent
with Salverda et al., 2011)—while informativeness guides
attention when the task does not encourage observers
to carefully consider the objects in the scene, and, by
extension, the interactions those objects afford. More
generally, the finding that different semantic aspects of a
scene influence the allocation of visual attention differently
depending on the viewer’s task offers additional, compelling
evidence for the cognitive guidance theory of eye movement
control (Henderson et al., 2007).

Appendix

Scenes and feature maps unique to each experiment.
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Experiment 1, 4, & 5 Scenes
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Experiment 2 Scenes
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Experiment 3 Scenes
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saliency models predict fixation selection in scenes beyond central
bias? A new approach to model evaluation using generalized
linear mixed models. Frontiers in Human Neuroscience, 11,
491.

Ostarek, M., & Huettig, F. (2019). Six challenges for embodiment
research. Current Directions in Psychological Science, 28(6),
593–599.

Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of
salience in the allocation of overt visual attention. Vision Research,
42(1), 107–123.

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019a). The role of
meaning in attentional guidance during free viewing of real-world
scenes. Acta Psychologica, 198, 102889.

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019b). Meaning
guides attention during scene viewing, even when it is irrelevant.
Attention, Perception, & Psychophysics, 81(1), 20–34.

Pelz, J. B., & Canosa, R. (2001). Oculomotor behavior and perceptual
strategies in complex tasks. Vision Research, 41(25–26), 3587–
3596.

R Core Team. (2021). R: A language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing.
https://www.R-project.org/.

Ramey, M. M., Yonelinas, A. P., & Henderson, J. M. (2020).
Why do we retrace our visual steps? Semantic and episodic
memory in gaze reinstatement. Learning & Memory, 27(7), 275–
283.

Rehrig, G., Cullimore, R. A., Henderson, J. M., & Ferreira, F. (2021).
When more is more: Redundant modifiers can facilitate visual
search. Cognitive Research: Principles and Implications, 6, 10.

Rehrig, G., Hayes, T. R., Henderson, J. M., & Ferreira, F. (2020a).
When scenes speak louder than words: Verbal encoding does
not mediate the relationship between scene meaning and visual
attention.Memory & Cognition, 48, 1181–1195.

Rehrig, G., Peacock, C. E., Hayes, T. R., Henderson, J. M., & Ferreira,
F. (2020b). Where the action could be: Speakers look at graspable
objects and meaningful scene regions when describing potential
actions. Journal of Experimental Psychology: Learning, Memory
and Cognition, 46(9), 1659–1681.

Salverda, A. P., Brown, M., & Tanenhaus, M. K. (2011). A goal-
based perspective on eye movements in visual world studies. Acta
Psychologica, 137(2), 172–180.

Shomstein, S., Malcolm, G. L., & Nah, J. C. (2019). Intrusive
effects of task-irrelevant information on visual selective attention:
Semantics and size. Current Opinion in Psychology, 29, 153–159.
https://doi.org/10.1016/j.copsyc.2019.02.008.

Sullivan, B., Ludwig, C. J. H., Damen, D., Mayol-Cuevas, W., &
Gilchrist, I. D. (2021). Look-ahead fixations during visuomotor
behavior: Evidence from assembling a camping tent. Journal of
Vision, 21(3), 13. https://doi.org/10.1167/jov.21.3.13.

Tatler, B. W. (2007). The central fixation bias in scene viewing:
Selecting an optimal viewing position independently of motor
biases and image feature distributions. Journal of Vision, 7
(14), 4.

Xu, J., Jiang, M., Wang, S., Kankanhalli, M. S., & Zhao, Q. (2014).
Predicting human gaze beyond pixels. Journal of Vision, 14
(1), 28.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1610 Attention, Perception, & Psychophysics (2022) 84:1583–1610

https://doi.org/10.1177/0956797621994768
https://doi.org/10.1016/j.tics.2005.02.009
https://doi.org/10.1371/journal.pone.0064937
https://doi.org/10.1371/journal.pone.0064937
https://doi.org/10.1073/pnas.1912333117
https://www.R-project.org/
https://doi.org/10.1016/j.copsyc.2019.02.008
https://doi.org/10.1167/jov.21.3.13

	Look at what I can do: Object affordances guide visual attention while speakers describe potential actions
	Abstract
	Introduction
	Methods
	Eyetracking data collection
	Subjects
	Stimuli
	Apparatus
	Procedure

	Meaning, grasp, and interact map generation
	Meaning maps
	Grasp maps
	Interact maps
	Analysis


	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	General discussion
	Conclusion
	Appendix 
	Experiment exp11, exp44, & exp55 Scenes
	Experiment exp22 Scenes
	Experiment exp33 Scenes



	References


