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Abstract
The complexity of the visual world requires that we constrain visual attention and prioritize some regions of the scene for
attention over others. The current study investigated whether verbal encoding processes influence how attention is allocated in
scenes. Specifically, we asked whether the advantage of scene meaning over image salience in attentional guidance is modulated
by verbal encoding, given that we often use language to process information. In two experiments, 60 subjects studied scenes (N1

= 30 and N2 = 60) for 12 s each in preparation for a scene-recognition task. Half of the time, subjects engaged in a secondary
articulatory suppression task concurrent with scene viewing. Meaning and saliency maps were quantified for each of the
experimental scenes. In both experiments, we found that meaning explained more of the variance in visual attention than image
salience did, particularly when we controlled for the overlap between meaning and salience, with and without the suppression
task. Based on these results, verbal encoding processes do not appear to modulate the relationship between scene meaning and
visual attention. Our findings suggest that semantic information in the scene steers the attentional ship, consistent with cognitive
guidance theory.
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Introduction

Because the visual world is information-rich, observers prior-
itize certain scene regions for attention over others to process
scenes efficiently. While bottom-up information from the
stimulus is clearly relevant, visual attention does not operate
in a vacuum, but rather functions in concert with other
cognitive processes to solve the problem at hand. What
influence, if any, do extra-visual cognitive processes
exert on visual attention?

Two opposing theoretical accounts of visual attention are
relevant to the current study: saliency-based theories and cog-
nitive guidance theory. According to saliency-based theories
(Itti & Koch, 2001; Wolfe & Horowitz, 2017), salient scene

regions – those that contrast with their surroundings based on
low-level image features (e.g., luminance, color, orientation) –
pull visual attention across a scene, from the most salient
location to the least salient location in descending order (Itti
& Koch, 2000; Parkhurst, Law, & Niebur, 2002). Saliency-
based explanations cannot explain that physical salience does
not determine which scene regions are fixated (Tatler,
Baddeley, & Gilchrist, 2005) and that top-down task demands
influence attention more than physical salience does
(Einhäuser, Rutishauer, & Koch, 2008). Cognitive guidance
theory can account for these findings: the cognitive system
pushes visual attention to scene regions, incorporating stored
knowledge about scenes to prioritize regions that are most
relevant to the viewer’s goals (Henderson, 2007). Under this
framework, cognitive systems – for example, long- and short-
term memory, executive planning, etc. – operate together to
guide visual attention. Coordination of cognitive systems
helps to explain behavioral findings where saliency-based at-
tentional theories fall short. For example, viewers look pref-
erentially at meaningful regions of a scene (e.g., those con-
taining task-relevant objects), even when they are not visually
salient (e.g., under shadow), despite the presence of a salient
distractor (Henderson, Malcolm, & Schandl, 2009).
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Recent work has investigated attentional guidance by
representing the spatial distribution of image salience and
scene meaning comparably (see Henderson, Hayes, Peacock,
& Rehrig, 2019, for review). Henderson and Hayes (2017)
introduced meaning maps to quantify the distribution of
meaning over a scene. Raters on mTurk saw small scene
patches presented at two different scales and judged how
meaningful or recognizable each patch was. Meaning maps
were constructed by averaging the ratings across patch scales
and smoothing the values. Image salience was quantified
using Graph-Based Visual Salience (GBVS; Harel et al.,
2006). The feature maps were correlated with attention maps
that were empirically derived from viewer fixations in scene
memorization and esthetic judgement tasks. Meaning ex-
plained greater variance in attention maps than salience did,
both for linear and semipartial correlations, suggesting that
meaning plays a greater role in guiding visual attention than
image salience does. This replicated when attention maps con-
structed from the same dataset were weighted on fixation du-
ration (Henderson & Hayes 2018), when viewers described
scenes aloud (Henderson, Hayes, Rehrig, & Ferreira, 2018;
Ferreira & Rehrig, 2019), during free-viewing of scenes
(Peacock, Hayes, and Henderson, 2019a, b), when meaning
was not task-relevant (Hayes & Henderson, 2019a), and even
when image salience was task-relevant (Peacock, Hayes, and
Henderson, 2019a, b). In sum, scene meaning explained var-
iation in attention maps better than image salience did across
experiments and tasks, supporting the cognitive guidance the-
ory of attentional guidance.

One question that remains unexplored is whether other
cognitive processes indirectly influence cognitive guidance
of attention. For example, it is possible that verbal encoding
may modulate the relationship between scene meaning and
visual attention: Perhaps the use of language, whether vocal-
ized or not, pushes attention to more meaningful regions.
While only two of the past experiments were explicitly lin-
guistic in nature (scene description; Ferreira & Rehrig, 2019;
Henderson et al., 2018), the remaining tasks did not control for
verbal encoding processes.

There is evidence that observers incidentally name objects
silently during object viewing (Meyer, Belke, Telling, &
Humphreys 2007; Meyer & Damian, 2007). Meyer et al.
(2007) asked subjects to report whether a target object was pres-
ent or not in an array of objects, which sometimes included
competitors that were semantically related to the target or were
semantically unrelated, but had a homophonous name (e.g., bat
the tool vs. bat the animal). The presence of competitors inter-
fered with search, which suggests information about the objects
(name, semantic information) became active during viewing,
even though that information was not task-relevant. In a
picture-picture interference study, Meyer and Damian (2007)
presented target objects that were paired with distractor objects
with phonologically similar names, and instructed subjects to

name the target objects. Naming latency was shorter when
distractor names were phonologically similar to the name of the
target object, suggesting that activation of the distractor object’s
name occurred and facilitated retrieval of the target object’s
name. Together, the two studies demonstrate a tendency for
viewers to incidentally name objects they have seen.

Cross-linguistic studies on the topic of linguistic relativity
employ verbal interference paradigms to demonstrate that perfor-
mance on perceptual tasks can bemediated by language process-
es. For example, linguistic color categories vary across languages
even though the visual spectrum of colors is the same across
language communities (Majid et al., 2018). Winawer et al.
(2007) showed that observers discriminated between colors faster
when the colors belonged to different linguistic color categories,
but the advantage disappeared with verbal interference. These
findings indicate that language processes can mediate perfor-
mance on perceptual tasks that are ostensibly not linguistic in
nature, and a secondary verbal task that prevents task-incidental
language use can disrupt the mediating influence of language.
Similar influences of language on ostensibly non-linguistic pro-
cesses, and the disruption thereof by verbal interference tasks,
have been found for spatial memory (Hermer-Vazquez, Spelke,
&Katsnelson, 1999), event perception (Trueswell& Papafragou,
2010), categorization (Lupyan, 2009), and numerical representa-
tions (Frank, Fedorenko, Lai, Saxe, & Gibson, 2012), to name a
few (see Lupyan, 2012; Perry & Lupyan, 2013; Ünal &
Papafragou, 2016, for discussion).

The above literature suggests we use internal language dur-
ing visual processing, and in some cases those language pro-
cesses may mediate perceptual processes. Could the relation-
ship between meaning and visual attention observed previous-
ly (Henderson & Hayes, 2017, 2018; Henderson et al., 2018;
Peacock et al., 2019a,b) have been modulated by verbal
encoding processes? To examine this possibility, we used an
articulatory suppression manipulation to determine whether
verbal encoding mediates attentional guidance in scenes.

In the current study, observers studied 30 scenes for 12 s each
for a later recognition memory test. The scenes used in the study
phase were mapped for meaning and salience. We conducted
two experiments in which subjects performed a secondary artic-
ulatory suppression task half of the time in addition to memoriz-
ing scenes. In Experiment 1, the suppression manipulation was
between subjects, and the articulatory suppression task was to
repeat a three-digit sequence aloud during the scene viewing
period. We chose this suppression task because we suspected
subjects might adapt to and subvert simpler verbal interference
such as a syllable repetition (e.g., Martin, Branzi, and Bar, 2018),
and because digit sequence repetition imposes less cognitive load
than n-back tasks (Allen, Baddeley, & Hitch, 2017). In
Experiment 2, we implemented a within-subject design using
two experimental blocks: one with the sole task of memorizing
scenes, the other with an additional articulatory suppression task.
Because numerical stimuli may be processed differently than
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other verbal stimuli (Maloney et al., 2019; van Dijck & Fias,
2011), we instead asked subjects to repeat the names of a se-
quence of three shapes aloud during the suppression condition. In
the recognition phase of both experiments, subjects viewed 60
scenes – 30 that were present in the study phase, 30 foils – and
indicated whether or not they recognized the scene from the
study phase.

We tested two competing hypotheses about the relationship
between verbal encoding and attentional guidance in scenes. If
verbal encoding indeed mediated the relationship between
meaning and attentional guidance in our previous work, we
would expect observers to direct attention to meaningful scene
regions only when internal verbalization strategies are avail-
able to them. Specifically, meaning should explain greater
variance in attention maps than saliency in the control condi-
tion, and meaning should explain less or equal variance in
attention as salience when subjects suppressed internal lan-
guage use. Conversely, if verbal encoding did not mediate
attentional guidance in scenes, the availability of verbalization
strategies should not affect attention, and so we would expect
to find an advantage of meaning over salience whether or not
subjects engaged in a suppression task.

Experiment 1: Methods

Subjects Sixty-eight undergraduates enrolled at the University of
California, Davis participated for course credit. All subjects were
native speakers of English, at least 18 years old, and had normal
or corrected-to-normal vision. They were naïve to the purpose of
the experiment and provided informed consent as approved by
the University of California, Davis Institutional Review Board.
Six subjects were excluded from analysis because their eyes
could not be accurately tracked, one due to an equipment failure,
and one due to experimenter error; data from the remaining 60
subjects were analyzed (30 subjects/condition).

Stimuli Scenes were 30 digitized (1,024 x 768) and
luminance-matched photographs of real-world scenes used
in a previous experiment (Henderson et al., 2018). Of these,
ten depicted outdoor environments (five street views), and 20
depicted indoor environments (three kitchens, five living
rooms, two desk areas, and ten different room types). People
were not present in any scenes.

Another set of 30 digitized images of comparable scenes
(similar scene categories and time period, no people depicted)
were selected from a Google image search and served as
memory foils. Because we did not evaluate attentional guid-
ance for the foils, meaning and salience were not quantified
for these scenes, and the images were not luminance-matched.

Digit sequences Digit sequences were selected randomly
without replacement from all three-digit numbers ranging
from 100 to 999 (900 numbers total), then segmented into

30 groups of 30 sequences each such that each digit sequence
in the articulatory suppression condition was unique.

Apparatus Eye movements were recorded with an SR Research
EyeLink 1000+ towermount eye-tracker (spatial resolution 0.01)
at a 1,000 Hz sampling rate. Subjects sat 83 cm away from a
24.5-in. monitor such that scenes subtended approximately 26° x
19° visual angle at a resolution of 1,024 x 768 pixels, presented
in 4:3 aspect ratio. Head movements were minimized using a
chin and forehead rest integrated with the eye-tracker’s tower
mount. Subjects were instructed to lean against the forehead rest
to reduce head movement while allowing them to speak during
the suppression task. Although viewing was binocular, eye
movements were recorded from the right eye. The experiment
was controlled using SR Research Experiment Builder software.
Data were collected on two systems that were identical except
that one subject computer operated using Windows 10, and the
other used Windows 7.

Scenememorization procedure Subjects were told they would
see a series of scenes to study for a later memory test. Subjects
in the articulatory suppression condition were told each trial
would begin with a sequence of three digits, and were
instructed to repeat the sequence of digits aloud during the
scene-viewing period. After the instructions, a calibration pro-
cedure was conducted to map eye position to screen coordi-
nates. Successful calibration required an average error of less
than 0.49° and a maximum error below 0.99°.

Following successful calibration, there were three practice
trials to familiarize subjects with the task prior to the experi-
mental trials. In the suppression condition, during these prac-
tice trials participants studied three-digit sequences prior to
viewing the scene. Practice digit sequences were three ran-
domly sampled sequences from the range 1–99, in three-
digit format (e.g., “0 3 6” for 36). Subjects pressed any button
on a button box to advance throughout the task.

Each subject received a unique pseudo-random trial order
that prevented two scenes of the same type (e.g., kitchen) from
occurring consecutively. A trial proceeded as follows. First, a
five-point fixation array was displayed to check calibration
(Fig. 1a). The subject fixated the center cross and the experi-
menter pressed a key to begin the trial if the fixation was
stable, or reran the calibration procedure if not. Before the
scene, subjects in the articulatory suppression condition saw
the instruction “Study the sequence of digits shown below.
Your task is to repeat these digits over and over out loud for
12 seconds while viewing an image of the scene” along with a
sequence of three digits separated by spaces (e.g., “8 0 9”),
and pressed a button to proceed (Fig. 1b). The scene was
shown for 12 s, during which time eye-movements were re-
corded (Fig. 1c). After 12 s elapsed, subjects pressed a button
to proceed to the next trial (Fig. 1d). The trial procedure re-
peated until all 30 trials were complete.

Mem Cogn



Memory test procedure A recognition memory test followed
the experimental trials, in which subjects were shown the 30
experimental scenes and 30 foil scenes they had not seen previ-
ously. Presentation order was randomized without replacement.
Subjects were informed that they would see one scene at a time
and instructed to use the button box to indicate as quickly and
accurately as possible whether they had seen the scene earlier in
the experiment. After the instruction screen, subjects pressed any
button to begin the memory test. In a recognition trial, subjects
saw a scene that was either a scene from the study phase or a foil
image. The scene persisted until a “Yes” or “No” button press
occurred, after which the next trial began. Response time and
accuracy were recorded. This procedure repeated 60 times, after
which the experiment terminated.

Fixations and saccades were parsed with EyeLink’s
standard algorithm using velocity and acceleration thresh-
olds (30°/s and 9500°/s2; SR Research, 2017). Eye-
movement data were imported offline into Matlab using
the Visual EDF2ASC tool packaged with SR Research
DataViewer software. The first fixation was excluded
from analysis, as were saccade amplitude (> 20°) and
fixation duration outliers (< 50 ms, > 1,500 ms).

Attention maps Attention maps were generated by construct-
ing a matrix of fixation counts with the same x,y dimensions
as the scene, and counting the total fixations corresponding to
each coordinate in the image. The fixation count matrix was
smoothed with a Gaussian low-pass filter with circular bound-
ary conditions and a frequency cutoff of -6 dB. For the scene-
level analysis, all fixations recorded during the viewing period
were counted. For the fixation analysis, separate attention
maps were constructed for each ordinal fixation.

Meaning maps We generated meaning maps using the
context-free rating method introduced in Henderson and
Hayes (2017). Each 1,024 x 768 pixel scene was decomposed
into a series of partially overlapping circular patches at fine
and coarse spatial scales (Fig. 2b and c). The decomposition
resulted in 12,000 unique fine-scale patches (87-pixel
diameter) and 4,320 unique coarse-scale patches (205-pixel
diameter), totaling 16,320 patches.

Raters were 165 subjects recruited from Amazon
Mechanical Turk. All subjects were located in the USA, had
a HIT approval rating of 99% or more, and participated once.
Subjects provided informed consent and were paid $0.50.

All but one subject rated 300 random patches extracted
from the 30 scenes. Subjects were instructed to rate how in-
formative or recognizable each patch was using a 6-point
Likert scale (“very low”, “low”, “somewhat low”, “somewhat
high”, “high”, “very high”). Prior to rating patches, subjects
were given two examples each of low-meaning and high-
meaning patches in the instructions to ensure they understood
the task. Patches were presented in random order. Each patch
was rated three times by three independent raters totaling
48,960 ratings per scene. Because there was high overlap
across patches, each fine patch contained data from 27 inde-
pendent raters, and each coarse patch from 63 independent
raters (see Fig. 2d for patch examples).

Meaning maps were generated from the ratings for each
scene by averaging, smoothing, and combining the fine and
coarse scale maps from the corresponding patch ratings. The
ratings for each pixel at each scale in each scene were aver-
aged, producing an average fine and coarse rating map for
each scene. The fine and coarse maps were then averaged
[(fine map + coarse map)/2]. Because subjects in the eye-

Fig. 1 Scenememorization trial procedure. (a) A five-point fixation array
was used to assess calibration quality. (b) In the articulatory suppression
condition only, the digit repetition task instructions were reiterated to

subjects along with a three-digit sequence. (c) A real-world scene was
shown for 12 s. (d) Subjects were instructed to press a button to initiate
the next trial, at which point the trial procedure repeated (from a)
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tracking task showed a consistent center bias1 in their fixa-
tions, we applied center bias to the maps using a multiplicative
down-weighting of scores in the map periphery (Hayes &
Henderson, 2019b). The final map was blurred using a
Gaussian filter via the Matlab function “imgaussfilt” with a
sigma of 10 (see Fig. 2f for an example meaning map).

Saliency maps Image-based saliency maps were constructed
using the Graph-Based Visual Saliency (GBVS) toolbox in
Matlab with default parameters (Harel et al., 2006). We used
GBVS because it is a state-of-the-art model that uses only
image-computable salience. While there are newer saliency
models that predict attention better (e.g., DeepGaze II:
Kümmerer, Wallis, & Bethge, 2016; ICF: Kümmerer,
Wallis, Gatys, & Bethge, 2017), these models incorporate
high-level image features through training on viewer fixations
(DeepGaze II and ICF) and object features (DeepGaze II),
which may index semantic information. We used GBVS to
avoid incorporating semantic information in image-based sa-
liency maps, which could confound the comparison with
meaning (see Henderson et al., 2019, for discussion).

Map normalization Prior to analysis, feature maps were nor-
malized to a common scale using image histogram matching
via the Matlab function “imhistmatch” in the Image
Processing Toolbox. The corresponding attention map for
each scene served as the reference image (see Henderson &
Hayes, 2017). Map normalization was carried out within task
conditions: for the map-based analysis of the control

condition, feature maps were normalized to the attention
map derived from fixations in the control condition only,
and likewise for the suppression condition. Results did not
differ between the current analysis and a second analysis using
feature maps normalized to the same attention map (from fix-
ations in the control condition).

We computed correlations (R2) across the maps of 30
scenes to determine the degree to which saliency and
meaning overlap with one another. We excluded the
peripheral 33% of the feature maps when determining
overlap between the maps to control for the peripheral
downweighting applied to both, which otherwise would
inflate the correlation between them. On average, mean-
ing and saliency were correlated (R2 = 0.48), and this
relationship differed from zero (meaning and saliency:
t(29) = 17.24, p < 0.001, 95% CI = [.43 .54]).

Experiment 1: Results

To determine what role verbal encoding might play in
extracting meaning from scenes, we asked whether the advan-
tage of meaning over salience in explaining variance in atten-
tion would hold in each condition. To answer this question,
we conducted two-tailed paired t-tests within task conditions.

Sensitivity analysis To determine whether we obtained ade-
quate effect sizes for the primary comparison of interest, we
conducted a sensitivity analysis using G*Power 3.1 (Faul,
Erdfelder, Lang, & Buchner, 2007; Faul, Erdfelder,
Buchner, & Lang, 2009). We computed the effect size index
dz – a standardized difference score (Cohen, 1988) – and the
critical t statistic for a two-tailed paired t-test with 95% power

1 “Center bias” is the tendency for fixations to cluster around the center of the
scene and to be relatively absent in the periphery of the image (Tatler, 2007).

Fig. 2 (a-d). Meaning map generation schematic. (a) Real-world scene.
(b, c) Fine scale (b) and coarse scale (c) spatial grids used to deconstruct
the scene into patches. (d) Examples of scene patches that were rated as
either low or high in meaning. (e–h) Examples of saliency (e), meaning
(f), and attention (g, h) maps for the real-world scene shown in (a).

Attention maps were empirically derived from viewer fixations in the
control condition (g) and the articulatory suppression condition (h). For
the purpose of visualization, all maps were normalized to the same atten-
tion map (g)
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and a sample size of 30 scenes. The analysis revealed a critical
t value of 2.05 and a minimum dz of 0.68.

Attention: Scene-level analysis We correlated meaning and
saliency maps with attention maps to determine the degree
to which meaning or salience guided visual attention (Fig.
3). Squared linear and semipartial correlations (R2) were com-
puted within each condition for each of the 30 scenes. The
relationship between meaning and salience, respectively, and
visual attention was analyzed using t-tests. Cohen’s d was
computed to estimate effect size, interpreted as small (d =
0.2 - 0.49), medium (d = 0.5 - 0.79), or large (d = 0.8+)
following Cohen (1988).

Linear correlations. In the control condition, when sub-
jects were only instructed to memorize scenes, meaning
accounted for 34% of the average variance in attention (M
= 0.34, SD = 0.14) and salience accounted for 21% (M =
0.21, SD = 0.13). The advantage of meaning over sa-
lience was significant (t(29) = 6.07, p < .001, 95% CI =
[0.09 0.17], d = 0.97, d 95% CI = [0.58 1.36], dz = 1.10).
In the articulatory suppression condition, when subjects
additionally had to repeat a sequence of digits aloud,
meaning accounted for 37% of the average variance in
attention (M = 0.37, SD = 0.17) whereas salience
accounted for 23% (M = 0.23, SD = 0.12). The advantage
of meaning over salience was also significant when the
task prevented verbal encoding (t(29) = 6.04, p < .001,
95% CI = [0.09 0.19], d = 0.88, d 95% CI = [0.53 1.22],
dz = 1.12).
Semipartial correlations.Because meaning and salience
are correlated, we partialled out the shared variance ex-
plained by both meaning and salience. In the control con-
dition, when the shared variance explained by salience
was accounted for, meaning explained 15% of the aver-
age variance in attention (M = 0.15, SD = 0.10), while
salience explained only 2% of the average variance once
the variance explained by meaning was accounted for (M
= 0.02, SD = 0.02). The advantage of meaning over sa-
lience was significant (t(29) = 6.07, p < .001, 95% CI =
[0.09 0.18], d = 1.98, d 95% CI = [0.86 3.10], dz = 1.15).
In the articulatory suppression condition, meaning ex-
plained 16% of the average unique variance after shared
variance was partialled out (M = 0.16, SD = 0.11), while
salience explained only 2% of the average variance after
shared variance with meaning was accounted for (M =
0.02, SD = 0.03), and the advantage was significant
(t(29) = 6.05, p < .001, 95% CI = [0.09 0.19], d = 1.95,
d 95% CI = [0.85 3.04], dz = 1.09).

To summarize, we found a large advantage of meaning
over salience in explaining variance in attention in both

conditions, for both linear and semipartial correlations. For
all comparisons, the value of the t statistic and dz exceeded
the thresholds obtained in the sensitivity analysis.

Attention: Fixation analysis Following our previous work
(Henderson & Hayes, 2017; Henderson et al., 2018), we ex-
amined early fixations to determine whether salience influ-
ences early scene viewing (Parkhurst et al., 2002; but see
Tatler et al., 2005). We correlated each feature map (meaning,
salience) with attention maps at each fixation (Fig. 3b).
Squared linear and semipartial correlations (R2) were comput-
ed for each fixation, and the relationship between meaning
and salience with attention, respectively, was assessed for
the first three fixations using paired t-tests.

Linear correlations. In the control condition, meaning
accounted for 37% of the average variance in attention
during the first fixation, and 14% and 13% during the
second and third fixations, respectively (1: M = 0.37,
SD = 0.19; 2: M = .14, SD = .11; 3: M = .13, SD = .10).
Salience accounted for 9% (1:M = .09, SD = .11), 8% (2:
M = 0.08, SD = 0.09), and 7% of the average variance (3:
M = 0.07, SD = 0.09) during the first, second, and third
fixations, respectively. The advantage of meaning was
significant for all three fixations (1: t(29) = 8.59, p <
.001, 95% CI = [0.21 0.34], d = 1.70, d 95% CI = [1.08
2.31]; 2: t(29) = 3.40, p = .002, 95% CI = [0.03 0.11], d =
0.66, d 95% CI = [0.23 1.08]; 3: t(29) = 4.21, p < .001,
95% CI = [0.03 0.08], d = 0.60, d 95% CI = [0.29 0.90]).
For subjects in the suppression condition, meaning
accounted for 42% of the average variance during the first
fixation (M = 0.42, SD = 0.18), 21% during the second
(M = 0.21, SD = 0.15), and 17% during the third fixation
(M = 0.17, SD = 0.13). Salience accounted for 10% of the
average variance during the first fixation (M = 0.10, SD =
0.10) and 9% during the second and third fixations (2:M
= 0.09, SD = 0.09; 3: M = 0.09, SD = 0.09). The advan-
tage of meaning over salience was significant for all three
fixations (1: t(29) = 10.27, p < .001, 95% CI = [0.26
0.38], d = 2.12, d 95% CI = [1.39 2.92]; 2: t(29) = 5.49,
p < .001, 95% CI = [0.08 0.17], d = 0.90, d 95% CI =
[0.51 1.29]; 3: t(29) = 4.49, p < .001, 95% CI = [0.04
0.12], d = 0.71, d 95% CI = [0.35 1.06]).
Semipartial correlations. To account for the correlation
between meaning and salience, we partialled out shared
variance explained by both meaning and salience, then
repeated the fixation analysis on the semipartial correla-
tions. In the control condition, after the shared variance
explained by both meaning and salience was partialled
out, meaning accounted for 30% of the average variance
at the first fixation (M = 0.30, SD = 0.16), 10% of the
variance during the second fixation (M = 0.10, SD =
0.09), and 8% during the third fixation (M = 0.08, SD =

Mem Cogn



0.06). After shared variance with meaning was partialled
out, salience accounted for only 2% of the average unique
variance at the first and third fixations (1:M = 0.02, SD =
0.03; 3: M = 0.02, SD = 0.03) and 3% at the second
fixation (M = 0.03, SD = 0.04). The advantage of mean-
ing was significant for all three fixations (1: t(29) = 8.58,
p < .001, 95% CI = [0.21 0.34], d = 2.66, d 95% CI =
[1.34 3.97]; 2: t(29) = 3.40, p < .001, 95% CI = [0.03
0.11], d = 0.99, d 95% CI = [0.28 1.70]; 3: t(29) = 4.21, p
< .001, 95% CI = [0.03 0.08], d = 1.10, d 95% CI = [0.44
1.76]). In the articulatory suppression condition, after the
shared variance with salience was partialled out, meaning
accounted for 34% of the average variance during the first
fixation (M = 0.34, SD = 0.15), 14% at the second fixa-
tion (M = 0.14, SD = 0.12), and 10% during the third

fixation (M = 0.10, SD = 0.09). After the shared variance
with meaning was partialled out, on average salience
accounted for 2% of the variance at all three fixations
(1: M = 0.02, SD = 0.03; 2: M = 0.02, SD = 0.02; 3: M
= 0.02, SD = 0.03). The advantage of meaning was sig-
nificant for all three fixations (1: t(29) = 10.27, p < .001,
95% CI = [0.26 0.38], d = 3.25, d 95% CI = [1.67 4.85];
2: t(29) = 5.49, p < .001, 95%CI = [0.08 0.17], d = 1.46, d
95% CI = [0.69 2.22]; 3: t(29) = 4.49, p < .001, 95% CI =
[0.04 0.12], d = 1.25, d 95% CI = [0.51 1.99]).

In sum, early fixations revealed a consistent advantage of
meaning over salience, counter to the claim that salience influ-
ences attention during early scene viewing (Parkhurst et al.,
2002). The advantage was present for the first three fixations in

Fig. 3 (a) Box plots showing linear correlations (left) and semipartial
correlations (right) between feature maps (meaning, saliency) and atten-
tion maps. The scatter box plots show the corresponding grand mean
(black horizontal line), 95% confidence intervals (colored box), and 1
standard deviation (black vertical line) for meaning (red box) and salience

(blue box) across 30 scenes. (b) Line graphs showing linear correlations
(top) and semipartial correlations (bottom) between feature maps and
attention maps for each fixation (1–38) when subjects engaged in a mem-
orization task only (solid lines) or additionally an articulatory suppression
task (dashed lines). Error bars indicate 95% confidence intervals
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both conditions, when we analyzed both linear and semipartial
correlations, and all effect sizes were medium or large.

Memory: Recognition To confirm that subjects took the memo-
rization task seriously, we totaled the number of hits, correct
rejections, misses, and false alarms on the recognition task for
each subject, each of which ranged from 0 to 30 (Fig. 4a).
Recognition performance was high in both conditions. On aver-
age, subjects in the control condition correctly recognized scenes
shown in the memorization task 95% of the time (Mhits = 0.95,
SDhits = 0.06), while subjects who engaged in the suppression
task during memorization correctly recognized scenes 90% of
the time (Mhits = 0.90, SDhits = 0.09). Subjects in the control
conditions falsely reported that a foil scene had been present in
the memorization scene set 3% of the time on average (Mfalse

alarms = 0.03, SDfalse alarms = 0.03), and those in the suppression
condition false alarmed an average of 4% of the time (Mfalse alarms

= 0.04, SDfalse alarms = 0.07). Overall, subjects in the control
condition had higher recognition accuracy, though the difference
in performance was small.

We then computed d’ with log-linear correction to handle
extreme values (ceiling or floor performance) using the dprime
function from the psycho package in R, resulting in 30 data
points per condition (1 data point/subject; Fig. 4b). On average,
d’ scores were higher in the control condition (M = 3.30, SD =
0.55) than the articulatory suppression condition (M = 2.99, SD =
0.74). The difference in performance was not significant, and the
effect size was small (t(58) = 1.83, p = 0.07, 95% CI = [-0.03
0.64], d = 0.47, d 95% CI = [-0.05 1.00]).

In sum, recognition was numerically better for subjects
who were only instructed to study the scenes as opposed to
those who additionally completed an articulatory suppression
task, but the difference was not significant.

Experiment 1: Discussion

The results of Experiment 1 suggest that incidental verbaliza-
tion does not modulate the relationship between scene mean-
ing and visual attention during scene viewing. However, the
experiment had several limitations. First, we implemented the
suppression manipulation between-subjects rather than
within-subjects out of concern that subjects might infer the
hypothesis in a within-subject paradigm and skew the results.
Second, because numerical cognition is unique (Maloney
et al., 2019; van Dijck & Fias, 2011), it is possible that another
type of verbal interference would affect the relationship be-
tween meaning and attention. Third, we tested relatively few
scenes (N=30).

We conducted a second experiment to address these limi-
tations and replicate the advantage of meaning over salience
despite verbal interference. In Experiment 2, the verbal inter-
ference consisted of sequences of common shape names (e.g.,
square, heart, circle) rather than digits, and the interference
paradigm was implemented within-subject using a blocked
design. We added 30 scenes to the Experiment 1 stimulus
set, yielding 60 experimental items total.

We tested the same two competing hypotheses in
Experiments 1 and 2: If verbal encoding mediates the relation-
ship betweenmeaning and attentional guidance, and the use of
numerical interference in Experiment 1 was insufficient to
disrupt that mediation, then the relationship between meaning
and attention should be weaker when incidental verbalization
is not available, in which case meaning and salience may
explain comparable variance in attention. If verbal encoding
does not mediate attentional guidance in scenes and our
Experiment 1 results cannot be explained by numerical inter-
ference specifically, then we expect meaning to explain

Fig. 4 (a) Violin plot showing the total number of recognition task responses for each subject (individual points), broken into hits, correct rejections,
misses, and false alarms. (b) Violin plot showing d’ values for each subject

Mem Cogn



greater variance in attention both when shape names are used
as interference and when there is no verbal interference.

Experiment 2: Methods

The method for Experiment 2 was the same as Experiment 1,
with the following exceptions.

Subjects Sixty-five undergraduates enrolled at the University of
California, Davis participated for course credit. All were native
speakers of English, at least 18 years old, and had normal or
corrected-to-normal vision. They were naive to the purpose of
the experiment and provided informed consent as approved by
the University of California, Davis Institutional Review Board.
Four subjects were excluded from analysis because their eyes
could not be accurately tracked, and an additional subject was
excluded due to excessive movement; data from the remaining
60 subjects were analyzed.

Shapes and shape sequencesWe selected the following com-
mon shapes for the suppression task: circle, cloud, club, cross,
arrow, heart, moon, spade, square, and star. Names for the
shapes were either monosyllabic (N=8) or disyllabic (N=2).
Shape sequences consisted of three shapes randomly sampled
without replacement from the set of 10.

Stimuli Scenes were 60 digitized (1,024 x 768) and
luminance-matched photographs of real-world scenes. Thirty
were used in Experiment 1, and an additional 30 were drawn
from another study. Of the additional scenes, 16 depicted out-
door environments, and 14 depicted indoor environments, and
each of the 30 scenes belonged to a unique scene category.
People and text were not present in any of the scenes

Another set of 60 digitized images of comparable scenes
(similar scene categories from the same time period, no people
depicted) served as foils in the memory test. Thirty of these
were used in Experiment 1, and an additional 30 were
distractor images drawn from a previous study. The
Experiment 1 scenes and the additional 30 scenes were equal-
ly distributed across blocks.

Apparatus The apparatus was identical to that used in
Experiment 1.

Scene memorization procedure Subjects were informed that
they would complete two separate experimental blocks, and
that in one block each trial would begin with a sequence of
three shapes that they would repeat aloud during the scene
viewing period.

Following successful calibration, there were four practice
trials to familiarize subjects with the task prior to the experi-
mental trials. The first two practice trials were control trials,
and the rest were articulatory suppression trials. These

consisted of shape sequences (e.g., cloud arrow cloud) that
were not repeated in the experimental trials. Before the prac-
tice trials, subjects were shown all of the shapes used in the
suppression task, alongside the names of each shape (Fig. 5a).
Subjects pressed any button on a button box to advance
throughout the task.

The trial procedure was identical to Experiment 1, except
that the pre-scene articulatory suppression condition displayed
the instruction “Study the sequence of shapes shown below.
Your task is to repeat these shapes over and over out loud for
12 seconds while viewing an image of the scene”, followed by
a sequence of three shapes (e.g., square, heart, cross) until the
subject pressed a button (Fig. 5b).

Memory test procedure Following the experimental trials in
each block, subjects performed a recognition memory in
which 30 experimental scenes they saw earlier in the block
and 30 foil scenes that they had not seen previously were
shown. The remainder of the recognition memory task proce-
dure was identical to that of Experiment 1. The procedure
repeated 60 times, after which the block terminated.

Following completion of the first block, subjects
started the second with another calibration procedure.
In the second block, subjects saw the other 30 scenes
(and 30 memory foils) that were not displayed during
the first block, and participated in the other condition
(suppression if the first block was the control, and vice
versa). Each subject completed 60 experimental trials
and 120 recognition memory trials total. The scenes
shown in each block and the order of conditions were
counterbalanced across subjects.

Attention maps Attention maps were generated in the same
manner as Experiment 1.

Meaning maps Meaning maps for 30 scenes added in
Experiment 2 were generated using the same procedure as
the scenes tested in Experiment 1, with the following
exceptions.

Raters were 148 UC Davis undergraduate students recruit-
ed through the UC Davis online subject pool. All were 18
years or older, had normal or corrected-to-normal vision,
and reported no color blindness. Subjects received course
credit for participation.

In each survey, catch patches showing solid surfaces (e.g.,
a wall) served as an attention check. Data from 25 subjects
who did not attend to the task (responded incorrectly on fewer
than 85% of catch trials), or did not respond to more than 10%
of the questions, were excluded. Data from the remaining 123
raters were used to construct meaning maps.

Saliency maps Saliency maps were generated in the same
manner as in Experiment 1.
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Map normalization Maps were normalized in the same man-
ner as in Experiment 1.

Map analysesWe determined the degree to which salien-
cy and meaning overlap for the 30 new scenes by com-
puting feature map correlations (R2) across the maps of
30 scenes, excluding the periphery to control for the
peripheral down-weighting associated with center bias-
ing operations. On average, meaning and saliency were
correlated (R2 = 0.51), and this relationship differed
from zero (meaning and saliency: t(29) = 23.52, p <
0.001, 95% CI = [.47 .56]).

Sensitivity analysisWe again conducted a sensitivity anal-
ysis, which revealed a critical t value of 2.00 and a
minimum dz of 0.47.

Scene-level analysis We correlated meaning and saliency
maps with attention maps in the same manner as in
Experiment 1. Squared linear and semipartial correlations
(R2) were computed within each condition for each of the
scenes. The relationship between meaning and salience with
visual attention was analyzed using t-tests. Cohen’s d was
computed, and effect sizes were interpreted in the same man-
ner as the Experiment 1 results.

Fixation analysisWe examined early fixations to replicate
the early advantage of meaning over image salience
observed in Experiment 1 and previous work (e.g.,
Henderson & Hayes, 2017). We correlated each feature
map (meaning, salience) with attention maps at each
fixation (Fig. 6b). Map-level correlations and t-tests
were conducted in the same manner as Experiment 1.

Experiment 2: Results

We sought to replicate the results of Experiment 1 using a
more robust experimental design. If verbal encoding is not
required to extract meaning from scenes, we expected an ad-
vantage of meaning over salience in explaining variance in
attention for both conditions. We again conducted paired t-
tests within task conditions.

Scene-level analysis

Linear correlationsMeaning accounted for 36% of the average
variance in attention in the control condition (M = 0.36, SD =
0.16) and salience accounted for 25% (M = 0.25, SD = 0.14;
Fig. 6). The advantage of meaning over salience was signifi-
cant and the effect size was large (t(59) = 6.74, p < .001, 95%
CI = [0.08 0.15], d = 0.80, d 95% CI = [0.53 1.07], dz = 0.79).
Meaning accounted for 45% of the variance in attention in the
suppression condition (M = 0.45, SD = 0.15) and salience
accounted for 27% (M = 0.27, SD = 0.13). Consistent with
Experiment 1, the advantage of meaning over salience was
significant even with verbal interference, and the effect size
was large (t(59) = 9.83, p < .001, 95% CI = [0.14 0.22], d =
1.24, d 95% CI = [0.91 1.58], dz = 1.30).

Semipartial correlations To account for the relationship be-
tween meaning and salience, we partialled out the shared
variance explained by both. When the shared variance ex-
plained by salience was accounted for in the control condi-
tion, meaning explained 15% of the average variance in
attention (M = 0.15, SD = 0.10), while salience explained
3% of the average variance after accounting for the variance
explained bymeaning (M = 0.03, SD = 0.05). The advantage

Fig. 5 Experiment 2 suppression task stimuli. (a) All ten shapes and shape names shown to subjects prior to the practice trials. (b) In the articulatory
suppression condition only, the shape repetition task instructions were reiterated to subjects along with a three-shape sequence
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of meaning over salience was significant, and the effect size
was large (t(59) = 6.75, p < .001, 95% CI = [0.08 0.15], d =
1.52, d 95% CI = [0.86 2.17], dz = 0.90). Meaning explained
20% of the unique variance on average after shared variance
was partialled out in the articulatory suppression condition
(M = 0.20, SD = 0.12), and salience explained 2% of the
average variance after shared variance with meaning was
accounted for (M = 0.02, SD = 0.04), and the advantage
was significant with a large effect size (t(59) = 9.83, p <
.001, 95% CI = [0.14 0.22], d = 2.19, d 95% CI = [1.38
3.00], dz = 1.25).

Consistent with Experiment 1, we found a large advantage
of meaning over salience in accounting for variance in atten-
tion in both conditions, for both linear and semipartial corre-
lations, and the value of the t statistic and dz exceeded the
thresholds obtained in the sensitivity analysis.

Fixation analysis

Linear correlations In the control condition, meaning
accounted for 30% of the average variance in attention during
the first fixation (M = 0.30, SD = 0.19), 17% during the second
(M = .17, SD = .13), and 16% during the third (M = .16, SD =
.13). Salience accounted for 11% of the variance at the first
fixation (M = .11, SD = .13) and 10% of the variance during
the second and third fixations (2:M = 0.10, SD = 0.11; 3:M =
0.10, SD = 0.11). The advantage of meaning was significant
for all three fixations, and effect sizes were medium or large
(1: t(59) = 8.17, p < .001, 95% CI = [0.15 0.24], d = 1.17, d
95% CI = [0.80 1.54]; 2: t(59) = 3.62, p = .001, 95% CI =
[0.03 0.11], d = 0.57, d 95% CI = [0.23 0.90]; 3: t(59) = 3.36,
p < .001, 95% CI = [0.02 0.09], d = 0.46, d 95% CI = [0.17
0.74]). In the suppression condition, meaning accounted for

Fig. 6 (a) Box plots showing linear correlations (left) and semipartial
correlations (right) between feature maps (meaning, saliency) and atten-
tion maps. The scatter box plots show the corresponding grand mean
(black horizontal line), 95% confidence intervals (colored box), and 1
standard deviation (black vertical line) for meaning (red box) and salience

(blue box) across 30 scenes. (b) Line graphs showing linear correlations
(top) and semipartial correlations (bottom) between feature maps and
attention maps for each fixation (1–38) when subjects engaged in a mem-
orization task only (solid lines) or additionally an articulatory suppression
task (dashed lines). Error bars indicate 95% confidence intervals
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45% of the average variance during the first fixation (M =
0.45, SD = 0.17), 32% during the second (M = 0.32, SD =
0.16), and 25% during the third (M = 0.25, SD = 0.15).
Salience accounted for 13% of the average variance during
the first fixation (M = 0.13, SD = 0.10),15% during the second
(M = 0.15, SD = 0.14), and 11% during the third (M = 0.11,
SD = 0.08). The advantage of meaning over salience was
significant for all of the three fixations (1: t(59) = 14.01, p <
.001, 95% CI = [0.28 0.37], d = 2.21, d 95% CI = [1.63 2.79;
2: t(59) = 7.65, p < .001, 95% CI = [0.12 0.21], d = 1.13, d
95% CI = [0.75 1.50]; 3: t(59) = 8.20, p < .001, 95% CI =
[0.10 0.17], d = 1.10, d 95% CI = [0.76 1.44]).

Semipartial correlations Because meaning and salience were
correlated, we partialled out shared variance explained by
both and analyzed semipartial correlations computed for each
of the initial three fixations. In the control condition, after the
shared variance explained by both meaning and salience was
partialled out, meaning accounted for 23% of the average
variance at the first fixation (M = 0.23, SD = 0.16), 11% of
the variance during the second (M = 0.11, SD = 0.11), and 9%
during the third (M = 0.09, SD = 0.10). After shared variance
with meaning was partialled out, salience accounted for 3% of
the average unique variance at the first fixation (M = 0.03, SD
= 0.06) and 4% at the second and third (2: M = 0.04, SD =
0.08; 3:M = 0.04, SD = 0.06). The advantage of meaning was
significant for all three fixations (1: t(59) = 8.17, p < .001,
95% CI = [0.15 0.24], d = 1.71, d 95% CI = [1.06 2.36]; 2:
t(59) = 3.62, p < .001, 95% CI = [0.03 0.11], d = 0.74, d 95%
CI = [0.28 1.20]; 3: t(59) = 3.37, p < .001, 95% CI = [0.02
0.09], d = 0.69, d 95% CI = [0.24 1.15]). In the suppression
condition, after the shared variance with salience was
partialled out, meaning accounted for 35% of the vari-
ance on average during the first fixation (M = 0.35, SD

= 0.16), 20% of the variance at the second (M = 0.20,
SD = 0.14), and 16% during the third (M = 0.16, SD =
0.12). After the shared variance with meaning was
partialled out, on average salience accounted for 2% of
the variance at the first and third fixations (1: M = 0.02,
SD = 0.04; 3: M = 0.02, SD = 0.03) and 3% of the
variance at the second (M = 0.03, SD = 0.06). The
advantage of meaning was significant for all three fixa-
tions, with large effect sizes (1: t(59) = 14.01, p < .001,
95% CI = [0.28 0.37], d = 3.06, d 95% CI = [2.03
4.08]; 2: t(59) = 7.65, p < .001, 95% CI = [0.12
0.21], d = 1.61, d 95% CI = [0.98 2.25]; 3: t(59) =
8.20, p < .001, 95% CI = [0.10 0.17], d = 1.66, d 95%
CI = [1.04 2.28]).

The results of Experiment 2 replicated those of
Experiment 1: meaning held a significant advantage
over salience when the entire viewing period was con-
sidered and when we limited our analysis to early view-
ing, both for linear and semipartial correlations.

Memory: Recognition As an attention check, we totaled the
number of hits, correct rejections, misses, and false alarms on
the recognition task for each subject (Fig. 7a). The totals for
each response category ranged from 0 to 30. Recognition per-
formance was high in both conditions. In the control condi-
tion, subjects correctly recognized scenes shown in the mem-
orization task 97% of the time on average (Mhits = 0.97, SDhits

= 0.18), while subjects correctly recognized scenes 91% of the
time after they had engaged in the suppression task during
memorization (Mhits = 0.91, SDhits = 0.29). In the control con-
dition, subjects falsely reported that a foil had been present in
the memorization scene set 1% of the time on average (Mfalse

alarms = 0.01, SDfalse alarms = 0.11), and in the suppression
condition, the average false-alarm rate was 2% (Mfalse alarms

Fig. 7 (a) Violin plot showing the total number of recognition task responses for each subject (individual points), broken into hits, correct rejections,
misses, and false alarms. (b) Violin plot showing d’ values for each subject
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= 0.02, SDfalse alarms = 0.15). Overall, recognition accuracy
was higher in the control condition than the suppression con-
dition, though the difference was small.

We then computed d’ in the same manner as Experiment 1
(Fig. 7b). In the control condition, d’ scores were higher on
average (M = 3.43, SD = 0.60) than in the suppression condi-
tion (M = 2.76, SD = 0.71). To determine whether the differ-
ence in means was significant, we conducted a paired t-test,
which revealed a significant difference with a large effect size
(t(59) = 6.62, p < 0.001, 95% CI = [0.47 0.88], d = 1.01, d
95% CI = [0.64 1.39]).

For Experiment 2, while recognition accuracy was high
overall, recognition was significantly better in the control con-
dition, when subjects memorized scenes and did not engage in
the suppression task.

Experiment 2: Discussion

The attention results of Experiment 2 replicated those of
Experiment 1, providing further evidence that incidental ver-
balization does not modulate the relationship between scene
meaning and visual attention during scene viewing.
Recognition performance was significantly worse in the sup-
pression condition than in the control condition, which we
cannot attribute to individual differences given that the inter-
ference manipulation was implemented within-subject. One
possibility is that the shape name interference imposed greater
cognitive load than the digit sequence interference; however,
we cannot determine whether that was the case based on the
current experiment.

General discussion

The current study tested two competing hypotheses concerning
the relationship (or lack thereof) between incidental verbal
encoding during scene viewing and attentional guidance in
scenes. First, the relationship between scene meaning and visual
attention could be mediated by verbal encoding, even when it
occurs incidentally. Second, scene meaning guides attention re-
gardless of whether incidental verbalization is available, and ver-
bal encoding does not mediate use of scene meaning. We tested
these hypotheses in two experiments using an articulatory sup-
pression paradigm in which subjects studied scenes for a later
memorization task and either engaged in a secondary task (digit
or shape sequence repetition) to suppress incidental verbalization,
or had no secondary task. In both experiments, we found an
advantage of meaning over salience in explaining the variance
in attention maps whether or not incidental verbalization was
suppressed. Our results did not support the hypothesis that verbal
encoding mediates attentional guidance by meaning in scenes.
To the extent that observers use incidental verbalization during
scene viewing, it does not appear to mediate the influence of

meaning on visual attention, suggesting that meaning in scenes
is not necessarily interpreted through the lens of language.

Our attentional findings do not support saliency-based the-
ories of attentional guidance in scenes (e.g., Parkhurst et al.,
2002). Instead, they are consistent with prior work showing
that regions with higher image salience are not fixated more
(Tatler et al., 2005) and that top-down information, including
task demands, plays a greater role than image salience in
guiding attention from as early as the first fixation
(Einhäuser, Rutishauser, & Koch, 2008). Consistent with cog-
nitive guidance theory, scene meaning – which captures the
distribution of information across the scene – predicted visual
attention better in both conditions than image salience did.
Because our chosen suppression manipulation interfered with
verbalization strategies without imposing undue executive
load (Allen et al., 2017), our findings demonstrate that the
advantage of meaning over salience was not modulated by
the use of verbal encoding during scene viewing. Instead,
we suggest that domain-general cognitive mechanisms (e.g.,
a central executive) may push attention to meaningful scene
regions, although additional work is required to test this idea.

Many of the previous studies that showed an effect of internal
verbalization strategies (via interference paradigms) tested sim-
pler displays, such as arrays of objects (Meyer et al., 2007), color
patches (Winawer et al., 2007), or cartoon images (Trueswell &
Papafragou, 2010), while our stimuli were real-world photo-
graphs. Unlike real-world scenes, observers cannot extract scene
gist from simple arrays, andmay process cartoons less efficiently
than natural scenes (Henderson & Ferreira, 2004). It is possible
that verbal encoding exerts a greater influence on visual process-
ing for simpler stimuli: the impoverished images may put visual
cognition at a disadvantage because gist and other visual infor-
mation that we use to efficiently process scenes are not available.

Limitations and future directions

We cannot know with certainty whether observers in our sup-
pression task were unable to use internal verbal encoding.
However, we would expect the secondary verbal task to have
at least impeded verbalization strategies (e.g., Frank et al.,
2012; Hermer-Vazquez et al., 1999; Trueswell &
Papafragou, 2010;Winawer et al., 2007), and that should have
impacted the relationship between meaning and attention if
verbal encoding is involved in processing scene meaning.
Furthermore, the suppression tasks we used (three-digit or
three-shape sequences) were comparable to tasks that elimi-
nated verbalization effects in related work (e.g., Lupyan,
2009), and so should have suppressed inner speech. We sus-
pect that a more demanding verbal task would have imposed
greater cognitive load, which could confound our results be-
cause we would not be able to separate effects of verbal inter-
ference from those of cognitive load.
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Subjects in the control condition did not perform a second-
ary non-verbal task (e.g., a visual working-memory task).
Given that our findings did not differ across conditions, we
suspect controlling for the secondary task’s cognitive load
would not have affected the outcome. Recall that prior work
has shown digit repetition tasks do not pose excessive cogni-
tive load (Allen et al., 2017), and we would have expected
lower recognition accuracy in the suppression condition if the
demands of the suppression task were too great. However, we
cannot be certain the verbal task did not impose burdensome
cognitive load in our paradigm, and therefore this remains an
issue for further investigation.

Our results are limited to attentional guidance when mem-
orizing scenes. It is possible that verbal encoding exerts a
greater influence on other aspects of visual processing, or that
the extent to which verbal encoding plays a role depends on
the task (Lupyan, 2012). Verbal interference may be more
disruptive in a scene categorization task, for example, than
in scene memorization, given that categorization often in-
volves verbal labels.

Conclusion

The current study investigated whether internal verbal
encoding processes (e.g., thought in the form of language)
modulate the influence of scene meaning on visual attention.
We employed a verbal interference paradigm to control for
incidental verbalization during a scene memorization task,
which did not diminish the relationship between scene mean-
ing and attention. Our findings suggest that verbal encoding
does not mediate scene processing, and contribute to a large
body of empirical support for cognitive guidance theory.

Open Practices Statement The experiment and analyses re-
ported here were not pre-registered. Supplemental material
are available at osf.io/8mbyv/. Data are available on request.
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